Объяснение: ЗАДАНИЕ 4
r=a×sinA/2, где а сторона ромба
r=12×sin30°/2=12×½/2=6/2=3см
r=3см. Длина окружности вычисляется по формуле: 2πr: длина окружности=2×3,14×3=18,84см
ответ: длина окружности=18,84см
ЗАДАНИЕ 5
Обозначим эти пропорции как 7х и 5х. Зная что периметр =44, составим уравнение:
7х+5х+8=44
12х+8=44
12х=44-8
12х=36
х=36÷12
х=3
Если х=3, то сторона2=7×3=21см
Сторона3=5×3=15см
Теперь найдём площадь треугольника через полупериметр:
р=44÷2=22см по формуле:
S=√((p(p-a)(p-b)(p-c)), где р- полупериметр, а, b, c стороны треугольника:
S=√((22(22-8)(22-21)(22-15))=
=√(22×14×1×7)=√2156=√(4×7×7×11)=
=2×7√11=14√11см²
ответ: S=14√11см²
ЗАДАНИЕ 6
Так как длина окружности =2πr, вычислим радиус, используя эту формулу:
2πR=12
R=12÷2π
R=6÷3,14
R=6/3,14см
R≈1,91см
Радиус в прямоугольнике равен половине его диагонали и Если рассмотреть треугольник, с углом между диагоналями 60°, то его стороны образуемые диагоналями будут равны поскольку в прямоугольнике они делятся пополам и равны радиусу. Если две стороны в треугольнике с углом 60° равны, то этот треугольник равносторонний. Поэтому одна из сторон =радиусу=1,91см. Диагональ прямоугольника делит его на 2 равных прямоугольных треугольника в котором диагональ является гипотенузой, и сейчас мы можем найти вторую сторону прямоугольника по теореме Пифагора:
Диагональ=1,91×2=3,82см
Сторона2=√(3,82²-1,91²)=
=√(14,5924-3,6481)=√10,9443≈3,31см
ответ: сторона1≈1,91см, сторона2≈3,31см
а = (b*sin α)/sin β = (4,56*0,5)/0,.965926 = 2,36043.
4) c = √(a²+b²-2ab*cosγ) = √(144+64-2*12*8*0,5) = √112 = 4√7 ≈ 10,58301.
sin β = b*sin γ / c = (8*√3)/(2*4√7) = √(3/7).
β = arc sin(√(3/7)) = 40,86339°.
α = 180-60-40,86339 = 79,10661°.
6) b =√(49+100-2*7*10*(-0,5)) = √219 ≈ 14,79865.
sin α = a*sin β/b = (*√3)/(2*√219) = 0,409644.
α = arc sin 0,409644 = 24,18547°.
γ = 180-120-24,18247 = 35,81753°.
8) Применяется теорема косинусов.
α = 18,19487°,
β = 128,68219°,
γ = 33,12294°.