В параллелограмме смежные углы равны 180’ —> если угол АВС = 150’, угол ВАС = 30’
Из точки В проведём высоту к АD - BH. Получается прямоугольный треугольник с углами 30’, 90’, 60’ (180’-90’-30’)
А в таких треугольниках катет на против угла 30’ равен половине гипотенузе, которая в данном треугольнике равна 8см —> ВН = 4см.
Площадь параллелограмма равна 1/2(AD*BH) = 1/2(10см*4см) = 40см^2(сантиметров в квадрате)
Периметр равен сумме всех сторон, так как в параллелограмме противоположные стороны равны, P = 10см + 8см + 10см + 8см = 36 см
ответ: S=40см^2, P=36см
20
Объяснение:
Строим из Е прямую, параллельную основанию. Получаем точку F. К ней проводим из С отрезок. Угол FCB при этом 60, т.к. ВС и FE параллельны. Точка пересечения FC и ВЕ - О. Опускаем из А биссектрису в т.О. Треугольник FEO равносторонний, углы по 60.
Угол DCF=10, FDC=30 (180-70-60). Угол ВАО=10, угол АОF=30 (60/2). FC=АF (т.к. углы А и АСF по 20 градусов). Значит, треугольники АОF и СDF равны. значит DF=OF. Но FEO - равносторонний, значит DF=FE. Т.е. треугольник DFE равнобедренный. Угол DFE=80, следовательно углы FDE и FED равны 50 градусов ((180-80)/2). Значит, искомый угол EDC=EDF-CDF=50-30=20.