В условии опечатка: в пункте б) надо найти отношение площадей треугольника ВОС и НЕвыпуклого пятиугольника AOBCD.
а) ∠ОВС = ∠ОСВ по условию, значит ΔОВС равнобедренный с основанием ВС, ОВ = ОС.
АС = CD по условию, значит ΔACD равнобедренный с основанием AD, ∠CAD = ∠CDA.
О - середина АС, значит
ОВ = ОС = ОА.
Итак, AD = 2BC (по условию), AC = 2OC и CD = 2OB, тогда
ΔADC подобен ΔСОВ по трем пропорциональным сторонам. Значит
∠ВСО = ∠DAC, а эти углы накрест лежащие при пересечении прямых AD и ВС секущей АС, значит BC║AD.
б) Коэффициент подобия треугольников ВОС и DAC:
k = 1/2
Площади подобных треугольников относятся как квадрат коэффициента подобия:
Sboc : Sdac = k² = 1/4
Т.е. Sdac = 4Sboc, тогда площадь пятиугольника AOBCD:
Saobcd = Sboc + Sdac = 5Sboc,
Sboc : Saobcd = 1 : 5
Треугольники ВСЕ и ДАЕ подобны,т.к. в них из свойства пересекающихся хорд вытекает пропорциональность двух сторон, а заключенные между этими сторонами углы при вершине Е, равны как вертикальные.
Действительно, по свойству пересекающихся хорд
СЕ*ДЕ=АЕ*ВЕ, разделим правую и левую части на отличное от нуля произведение АЕ*ДЕ, получим пропорциональность сторон. а именно
СЕ/АЕ=ВЕ/ДЕ.