ответ:8 см
Объяснение:
Пусть дана окружность с центром в т.О. Проведем прямую, которая пересечет окружность в т. А и т.В, т.о. АВ - хорда, АВ = 12 см. Т.к. т.А и В лежат на окружности, то ОА = ОВ = 10 см - это радиусы окружности. Получим треугольник АОВ - равнобедренный, АВ - основание. Проведем ОК ⊥ АВ, ОК - расстояние от центра до хорды. Значит ОК - медиана , АК = ВК = 12 : 2 = 6 см. Рассмотрим треугольник ОКА - прямоугольный и найдем ОК используя теорему Пифагора.
ОК² = ОА² - АК² , ОК² = 100 - 36 = 64 см², ОК = корень из 64 = 8 см
ответ: 8см
А(-3;8)
В(-11;-4)
Н(х;у)
Х=(-11+(-3))÷2
Х=-14÷2=-7
Х=-7
У=(-4+8)÷2
У=4÷2=2
Н(х;у)=Н(-7;2)
ответ:Н(-7;2)