М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kotnakompe
Kotnakompe
02.08.2022 06:22 •  Геометрия

Найдите площадь трапеции, изображенной на клетчатой бумаге с размером клетки 1 см х1 см (см. рис.). ответ дайте в квадратных сантиметрах.

👇
Открыть все ответы
Ответ:
jhghjlkuyfjy
jhghjlkuyfjy
02.08.2022

Пусть дано ΔАВС i ΔА 1 В 1 С 1 причем АС = А 1 С 1 , ВМ i B 1 M 1 - медианы, ВМ = B 1 M 1 , ∟BMC = ∟B 1 M 1 C 1 .

Докажем, что ΔАВС = Δ А 1 В 1 С 1 .

Рассмотрим ΔВМС i ΔB 1 M 1 C 1 .

1) ВМ = B 1 M 1 (по условию)

2) ∟BMC = ∟В 1 М 1 С 1 (по условию)

3) МС = М 1 С 1 (половины равных стopiн AC i A 1 С 1 ).

Итак, ΔВМС = ΔВ1М1С1 за I признаку.

Рассмотрим ΔАВС i Δ А 1 В 1 С 1 .

1) AC = А 1 С 1 (по условию)

2) ∟C = ∟C 1 (т. К. ΔВМС = Δ B 1 M 1 C 1 )

3) ВС = В 1 С 1 (т. К. ΔВМС = Δ B 1 M 1 C 1 ).

Итак, ΔАВС = ΔА 1 В 1 С 1 , за I признаку.

4,8(50 оценок)
Ответ:
мамадочп4а
мамадочп4а
02.08.2022

(см. объяснение)

Объяснение:

Рассмотрим плоскость (AST). Заметим, что BC⊥(AST), так как BC⊥SO и BC⊥AT и SO∩AT=O. Тогда BC перпендикулярна любой прямой, лежащей в этой плоскости. Опустим теперь перпендикуляр AH из точки A на ST в плоскости (AST). Получим, что AH⊥ST и AH⊥BC и ST∩BC=T. Тогда AH⊥(BSC), т.е. является искомым расстоянием. Найдем теперь AH. Приравняв площади треугольника, получим, что AH=\dfrac{AT\times SO}{ST}. Понятно, что AT ищем по теореме Пифагора для треугольника ATC: AT²=AC²-TC², => AT=4√3. ST ищем по той же теореме Пифагора, но для треугольника STC: ST²=SC²-TC² => ST=2√21. Перед тем, как искать SO, вспомним, что медианы точкой пересечения делятся 2:1, считая от вершины. Тогда OT=4/√3 => SO=2√177/3 (опять-таки по теореме Пифагора для треугольника OST). Значит AH=\dfrac{4\sqrt{1239}}{21}. Приведем теперь ответ к требуемому виду: 21\times\left(\dfrac{4\sqrt{1239}}{21}\right)^2=944.

Задание выполнено!


Без решения (можно только ответ)
4,6(22 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ