Ну вот ... :( этот параллелограмм "составлен" из двух "египетских" треугольников со сторонами (6, 8, 10) - один перевернут и они "приставлены" друг к другу катетами 6.
То есть высота параллелограмма, она же - диагональ, равна 6. а площадь 6*8 = 48.
Этот параллелограмм можно и так построить - взять прямоугольник 6 на 8, провести диагональ (из левого нижнего в правый верхний угол, длины 10) и потом "верхний" треугольник сдвинуть вправо, пока стороны не совпадут. Поэтому его площадь равна площади прямоугольника 6 на 8.
1) квадрат и треугольник взаимно перпендикулярны, значит, ВС перпендикулярна плоскости треугольника АМВ, следовательно ВС перпендикулярна любой прямой лежащей в плоскости АМВ, а значит, перпендикулярна и АМ.
2)проведём высоту МК в треугольнике АМВ. Так как треугольник равнобедренный, то высота является и медианой, поэтому АК=КВ=4:2=2
из прямоугольного треугольника МКВ МК^2=MB^2-BK^2=(2 корень из6)^2-4=4*6-4=20
из прямоугольного треугольника КВС КС^2=KB^2+BC^2=2^2+4^2=4+16=20
треугольник МКС равнобедренный значит угол КМС=углу МСК, угол МКС=90градусов так как МК перпендикулярна к плоскости квадрата, поэтому угол между МС и плоскостью квадрата равен 90градусов :2=45 градусов