Угол с равен 120 градусов и треугольник авс равнобедренный, то углы а и в равны между собой и равны 30 градусам (сумма углов треугольника равна 180 градусов) высота равнобедренного треугольника делит его основание пополам, получается, что ан = вн = 6см косинус угла в 30 градусов равен корню из 3/2 косинус - отношение прилежащего катета к гипотенузе, т. е. вн / вс = корень из 3/2 зная вн, можем найти вс (гипотенузу) вс = 6 / (корень из 3 / 2) (под корнем только 3) по теореме пифагора, квадрат гипотенузы равен сумме квадратов катетов, т. е. вс2 = вн2 + сн2 зная вс и вн, можем найти сн (собственно, высоту) сн2 = вс2 - вн2 сн2 = (6 / (корень из 3 / 2))2 - (6 в квадрате) сн2 = (12 / корень из 3)2 - 36 сн2 = 144/3 - 36 сн2 = 48 - 36 сн2 = 12 сн = корень из 12
ГМТ, удалённых от заданной точки на заданное расстояние - это окружность с радиусом, равным заданному расстоянию. Координаты точки Х находим совместным решением уравнений таких окружностей. Поместим квадрат АВСД в прямоугольную систему координат точкой А в начало, стороной АД по оси Ох. Точка А (0; 0), точка С (1; 1). Уравнение окружности с центром в точке А: х² + у² = 5. Уравнение окружности с центром в точке С: (х - 1)² + (у - 1)² = 7.
Решаем систему: Раскроем скобки: Подставим вместо х² + у² число 5 и получим: -2х - 2у = 0 или у = - х. Это говорит о том, что точка Х лежит на прямой у = -х. Подставим это свойство в первое уравнение: х² + (-х)² = 5, 2х² = 5, х = +-√(5/2) ≈ +- 1,5811388. Тогда у = -+ 1,5811388. Имеем две точки, где может находиться точка Х: Х((-√(5/2)); √(5/2)) и Х₁((√(5/2)); -√(5/2)). Имеем и 2 расстояния от точки Х до точки В. Расстояние между точками. d = √((х2 - х1)² + (у2 - у1 )²). BХ = 1,684554, BХ1 = 3,026925.