Расстояние между двумя точками вычисляются по формуле АВ=√(х2-х1)²+(у2-у1)². НF=√(6-1)²+(3-3)²=√25=5. FQ=√(6-1)²+(3-8)²=√50=5√2. НQ=√(1-1)²+(8-3)²=√25=5. ΔHFQ - равнобедренный HQ=HF=5. Можно сразу определить вид данного треугольника: прямоугольный равнобедренный, значит острые углы по 45°. ответ:45 °. Но можно по формуле косинусов определить острый угол С. FQ²=HF²+HQ²-2·HF·HQ·cosH=25+25-2·5·5·cosH=50. 50-50·cosH=50. 50(1-cosH)=50. 1-cosH=50/50. 1-cosH=1. cosH=0. ∠H=90°, значит два острых угла равны по 45°. ответ: ∠F=45°.
Квадрат катета равен произведению гипотенузы на проекцию катета на гипотенузу:
4^2=2c⇒c=8⇒второй кусок гипотенузы равен 8-2=6.
Квадрат высоты прямого угла равен произведению отрезков гипотенузы:
h^2=2·6=12⇒h=√12=2√3
Площадь треугольника равна половине произведения стороны на высоту⇒
S=(1/2)·8·2√3=8√3
ответ: 8√3
Второй Треугольник ABC; C- прямой угол, BC=4; CD - высота, BD=2⇒в прямоугольном треугольнике BCD гипотенуза BC в два раза больше катета BD⇒∠BCD=30°⇒∠CBD=90-30=60°⇒∠CAB=90-60=30°⇒ гипотенуза AB в два раза больше катета BC⇒AB=4·2=8. Площадь треугольника найдем по формуле половина произведения двух сторон на синус угла между ними:
АВ=√(х2-х1)²+(у2-у1)².
НF=√(6-1)²+(3-3)²=√25=5.
FQ=√(6-1)²+(3-8)²=√50=5√2.
НQ=√(1-1)²+(8-3)²=√25=5.
ΔHFQ - равнобедренный HQ=HF=5.
Можно сразу определить вид данного треугольника: прямоугольный равнобедренный, значит острые углы по 45°.
ответ:45 °.
Но можно по формуле косинусов определить острый угол С.
FQ²=HF²+HQ²-2·HF·HQ·cosH=25+25-2·5·5·cosH=50.
50-50·cosH=50.
50(1-cosH)=50.
1-cosH=50/50.
1-cosH=1.
cosH=0.
∠H=90°, значит два острых угла равны по 45°.
ответ: ∠F=45°.