значит рисуем два вектора а и b (они выходят из одной точки, угол между ними 120 градусов) и проводим по правилу "из вычитаемого в уменьшаемое" вектор из конца b в конец а. это и будет наш a-b найти его модуль можно из треугольника со сторонами 3 и 5 и углом 120 градусов между ними, то есть применяем теорему косинусов (|a-b|)^2=|a|^2+|b|^2-|a|*|b|*2cos120=9+25-15*2*(-1/2)=49. |a-b|=7
Решение: АС=АН+НС 1)Рассмотрим треугольник АВН, он прямоугольный, по определению высоты Катет противолежащий углы=равен произведению гипотенузы на синус этого угла, то есть Используя таблицу Брадиса найдем значение угла и получим, что угол ВАС=37 градусов 2) Рассматриваем треугольника АВС угол АСВ=180-угол ВАС-угол СВА=180-37-90=53градуса 3)рассмотрим треугольник ВНС Катет противолежащий углу равен произведению другого катета на тангенс этого угла, то есть 4)AC=AH+HC=8+4,5=12,5 ответ: АС=12,5
Решение: АС=АН+НС 1)Рассмотрим треугольник АВН, он прямоугольный, по определению высоты Катет противолежащий углы=равен произведению гипотенузы на синус этого угла, то есть Используя таблицу Брадиса найдем значение угла и получим, что угол ВАС=37 градусов 2) Рассматриваем треугольника АВС угол АСВ=180-угол ВАС-угол СВА=180-37-90=53градуса 3)рассмотрим треугольник ВНС Катет противолежащий углу равен произведению другого катета на тангенс этого угла, то есть 4)AC=AH+HC=8+4,5=12,5 ответ: АС=12,5
значит рисуем два вектора а и b (они выходят из одной точки, угол между ними 120 градусов) и проводим по правилу "из вычитаемого в уменьшаемое" вектор из конца b в конец а. это и будет наш a-b найти его модуль можно из треугольника со сторонами 3 и 5 и углом 120 градусов между ними, то есть применяем теорему косинусов (|a-b|)^2=|a|^2+|b|^2-|a|*|b|*2cos120=9+25-15*2*(-1/2)=49. |a-b|=7