Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.
a)
В параллелограмме противоположные стороны равны.
AB=DC=3, AD=BC=5
B=180-A=110 (внутренние односторонние углы при AD||BC)
В параллелограмме противоположные углы равны.
A=C=70, B=D=110
Треугольник ABD задан двумя сторонами и углом между ними.
△ABD=△CDB (по трем сторонам)
Таким образом параллелограмм ABCD задан и можно найти любые его элементы (высоты, диагонали ...).
b)
Опустим перпендикуляр OH на AD.
OH =AO sin50 =3,06
Длина перпендикуляра - кратчайшее расстояние от точки до прямой.
Отрезок OD не может быть меньше OH => конструкция с данными размерами не существует.
c)
∠AEB=∠CBE (накрест лежащие при AD||BC) =∠ABE
=> △BAE -р/б, AB=AE=3
AD=AE+ED=5
AD=BC=5, AB=DC=3 (противоположные стороны параллелограмма)
По теореме Пифагора c^2=a^2+b^2
Т.к. у квадрата все стороны равны, c^2(или d-диагональ)=2a^2
(8√2)^2=2a^2
2a^2=128
a^2=64
a=8
Итак, сторона квадрата равна 8м, тогда площадь: S=a^2=8^2=64м
ответ: площадь квадрата равна 64м, а сторона 8м