Основание пирамиды – прямоугольник с меньшей стороной 10 см и углом между диагоналями 60⁰. Каждое боковое ребро пирамиды равно 26 см. Найдите объем пирамиды.
Серега поспешил немного :)) а торопиться не надо :)) мы должны вернуть обществу полноценного гражданина :))
Да, если опустить высоту на основание, то треугольник делится на 2 равных прямоугольных, причем у каждого гипотенуза 15, и катет 9. Это треугольники, подобные египетскому (3,4,5), то есть второй катет 12, это и есть высота. Можно, конечно, и теорему Пифагора применить напрямую, но так веселее.
Периметр треугольника 48, площадь 12*15/2 = 90, отсюда радиус вписанной окружности r = 2S/P
r = 2*90/48 = 45/12;
Радиус описанной окружности конечно считается по формуле R = abc/4S, которая выводится из обычной формулы для площади и теоремы синусов.
В равнобедренном треугольнике медианы, проведенные к боковым сторонам, равны. Доказательство: Пусть АБВ - равнобедренный треугольник , АК и БЛ - его медианы. Тогда треугольники АКБ и АЛБ равны по второму признаку равенства треугольников. У них сторона АБ общая, стороны АЛ и БК равны как половины боковых сторон равнобедренного треугольника, а углы ЛАБ и КБА равны как углы при основании равнобедренного треугольника. Так как треугольники равны, их стороны АК и ЛБ равны. Но АК и ЛБ - медианы равнобедренного треугольника, проведённые к его боковым сторонам.
Серега поспешил немного :)) а торопиться не надо :)) мы должны вернуть обществу полноценного гражданина :))
Да, если опустить высоту на основание, то треугольник делится на 2 равных прямоугольных, причем у каждого гипотенуза 15, и катет 9. Это треугольники, подобные египетскому (3,4,5), то есть второй катет 12, это и есть высота. Можно, конечно, и теорему Пифагора применить напрямую, но так веселее.
Периметр треугольника 48, площадь 12*15/2 = 90, отсюда радиус вписанной окружности r = 2S/P
r = 2*90/48 = 45/12;
Радиус описанной окружности конечно считается по формуле R = abc/4S, которая выводится из обычной формулы для площади и теоремы синусов.
R = 18*15*15/(4*90) = 45/4;