1.Пусть х -это меньший угол , тогда больший 4х
составляем уравнение
×+4×=90° (по свойству пр.уг. треугольника)
5×=90
×=18-меньший угол
4×=72 больший угол
2. смотрим на чертёж и видим что сторона КН в 2 раза меньше ТН т.к. 58÷2=29, значит по свойству пр.уг треугольника мы знаем, что напротив угла 30° лежит катетер равный половине гипотенузы. Исходя из данных можно понять что в нашем треугольнике угол 30° будет угол КТН
тогда вычислим угол КНТ
КНТ=90°-30°=60°(по свойству пр.уг треугольника)
угол КНт и угол ТНF смежные, значит их сумма равна 180°. исходя из этого можно вычислить угол THF
THF=180°-60°=120°
3.угол DOC смежный с углом BOC ,значит
DOC=180°-132°=48°
Поскольку ВD является биссектрисы прямого угла , то угол KBD =45°
тогда угол ВКО =180°-(45°+48°)=87°
тогда смежный ему угол АКО=180-87°=93°
угол ОСВ=180°-(45°+132°)= 3°
поскольку СК биссектриса то она поделилась угол ВСА пополам,значит ВСА=2×3=6°
тогда можем найти второй острый угол треугольника ВАС
уголВАС=90°-6°=84°
ОТВЕТ: УГОЛ ВАС=84°, УГОЛ ВСА=6°
1) Площадь поверхности складывается из площади боковых сторон и двух площадей оснований S = 2(a+b)*c + 2ab = 2(1+2)*3+2ab = 18+4 = 22
2) Апофема пирамиды - это высота боковой грани. Проведем вертикальную плоскость через вершину пирамиды параллельно стороне основания. В сечении получим равнобедренный треугольник с высотой b и основанием а. Боковые стороны треугольника - апофемы с. По теореме Пифагора: с=√[b²+(a/2)²]
3)Проведем вертикальную плоскость через высоту пирамиды и боковое ребро.
В сечении получим прямоугольный тр-к у которого один из катетов OE=10 - высота пирамиды, другой лежит в плоскости основания AE, а гипотенуза OA=10√2 - ребро.
У угла при основании ОАЕ - sin(OAE)=OE/OA=10/10√2 = √2/2.
ответ - угол при основании OAE=45 градусов
4)Полная поверхность пирамиды равна сумме площадей боковых сторон + площадь основания: S = 3(4*3)/2 + 2(√3*a²/4) = 18 + 8√3 ≈ 31,9
только в 7 случаи. 16,5<34,5+28,5
34,5<16,5+28,5 28,5<16,5+34,5