Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а. Доказать: а - касательная к окружности. Доказательство: Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности. Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
Чертеж не обязателен. а)1 случай. 40°-угол при вершине,значит углы при основании равны по (180°-40°)÷2=70° ответ:40°;70°;70°. 2 случай. 40°-один из углов при основании,углы при основании равнобедренного треугольника равны,значит угол при вершине равен 180°-(40°×2)=100° ответ:40°;40°;100°. б) 1 случай. 60°-угол при вершине,значит каждый угол при основании равен (180°-60°)÷2=60° ответ:60°;60°;60°. 2 случай. 60°- угол при основании,а углы при основании равнобедренного треугольника равны,значит угол при вершине равен 180°-(60°×2)=60° ответ:60°;60°;60°. в) один случай 100°-угол при вершине,значит каждый угол при основании равен (180°-100°)÷2=40° ответ:100°;40°;40°.
ответ: решение смотри на фотографии
Объяснение: