Рассмотрим треугольник EFA У него даны две стороны Третью стороны мы находил либо через теорему Пифагора ( c 2 = a2 +b2) либо мы видим что это египетский треугольник Следовательно третья сторона равна 8. Сторона CA =CF+FA Следовательно CA=12+8=20 Рассмотрим треугольники BCA и EFA Угол С и угол F прямые и они равны Угол А общие Следовательно эти треугольники подобны по двум углам y мы уже нашли ( он равен 8) Находим k(коэффициент подобия) .Его находясь через отношения сторон подобных треугольников. В нашем случае берём сторону САМ и FA . Их отношения равно 3/4 ( следовательно k=3/4) Находим x -? Этой стороне подобна сторона EF
1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения: R=3/cos 18=3/0.95=3.15 (см). Найдем сторону фигуры: a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см) ответ: 1.89 см. 2) Найдем R: R = r/cos 180/n=5/√3/2=10√3/3 (см) Длина стороны равна R, следовательно a=R=10√3/3, значит, P = 6a=10√3/3*6=20√3 (cм) или 34.64 см. ответ: 20√3 см или 34.64 см. 3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см). ответ: 30 см.
У него даны две стороны
Третью стороны мы находил либо через теорему Пифагора ( c 2 = a2 +b2) либо мы видим что это египетский треугольник
Следовательно третья сторона равна 8.
Сторона CA =CF+FA
Следовательно CA=12+8=20
Рассмотрим треугольники BCA и EFA
Угол С и угол F прямые и они равны
Угол А общие
Следовательно эти треугольники подобны по двум углам
y мы уже нашли ( он равен 8)
Находим k(коэффициент подобия) .Его находясь через отношения сторон подобных треугольников. В нашем случае берём сторону САМ и FA . Их отношения равно 3/4 ( следовательно k=3/4)
Находим x -?
Этой стороне подобна сторона EF