Так как пирамида правильная четырехугольная, то основания - квадраты. Меньшее из них имеет сторону, равную 2 (по условию), и диагональ его равна "2 корня из 2". Большее основание имеет сторону 10 (по условию) и диагональ "10 корней из 2".
Вершины меньшего основания проецируются на диагонали большего. Величина отрезка, соединяющего вуершину большего основания с точкой, являющейся проекцией вершины меньшего основания на большее, равен ("10 корней из двух" - 2 корня из двух")/2 = "4 корня из 2".
Высота усеченной пирамиды равна 7 (по условию. Тогда квадрат бокового ребра будет равен (согласно теореме Пифагора) "4 корня из 2" + 7^2 = 32 + 49 = 81, , а боковое ребро корню из 81, т.е. 9.
ответ: 9
BK и CN - высоты из В и С на AD.
AD = 18 cм.
AB = CD
L A = L D = 60 град.
Пусть AK = ND = x
AB = AK / cos 60 = 2AK = 2x
CD = ND / cos 60 = 2ND = 2x
KN = BC
AD = AK + KN + ND = 2x + KN = 2x + BC = 18
AD + BC = AB + CD
(2x + BC) + BC = 2x + 2x
2BC = 2x
{BC = x =
{2x + BC = 18
2x + x = 18
3x = 18
x = 6 отсюда следует
AB = 2x = 2*6 = 12 см
AK = x = 6 =>
BK^2 = AB^2 - AK^2 = 12^2 - 6^2 = 108 = (10,4)^2
BK = 10,4 см - высота трапеции, она де диаметр вписанной окружности.
S = пD2 /4 = 3,14 * 10,4^2 / 4 = 84,78 см2