ОТ ПОСТРОИТЬ РИСУНОК С ТАКИМ УСЛОВИЕМ: Достройте равнобедренный треугольник до параллелограмма, продолжив медиану к боковой стороне на расстояние 6 см. 8 см и 12 см -- его диагонали, одна из его сторон 8 см, а вторая сторона -- искомое основание.
Каждое боковое ребро составляет с плоскостью основания угол в 45° - следовательно, все ребра равны, а их проекции равны радиусу описанной около основания пирамиды окружности, Основание высоты пирамиды - центр О описанной окружности. . Величина её радиуса АО равна 2/3 высоты основания.
AH=AB•sin60°=4√3/2=2√3
Высота МО перпендикулярна основанию
∆АМО - прямоугольный, острый угол МАО=45°, следовательно, второй АМО=45°, и высота пирамиды МО=АО=4/√3
Пирамида правильная, т. е. проекция вершины на основание совпадает с пересечением его диагоналей. В квадрате длина диагонали «сторона квадрата» множить на корень из 2-х (можно сослаться на теорему Пифагора – квадрат гипотенузы равен сумме квадратов катетов, поскольку треугольник имеет прямой угол). Диагональ квадрата – она же и основание треугольника в указанном сечении пирамиды. Угол (при учёте, что треугольник прямоугольный) вычисляется как арктангенс отношения противолежащего катета к прилежащему. Противолежащий – это высота из условия, а прилежащий – половина диагонали квадрата в основании. Если подставить все известные данные, то получается дробь: делимое - 5 корней из 6-ти, а делитель - 10 корней из 2-х делённое на 2. После «перекочёвки» 2-ки к 5-ке и сокращения остаётся корень из 6 делить на корень из 2-х или просто корень из 3-х. Арктангенс корня из 3-х ровно 60 градусов. Площадь сечения просто получается перемножением катетов того же треугольника (половинки сечения). 5 корней из 6 множить на 10 корней из 2-х делённых на 2. Всё легко сокращается до вида 50 корней из 3-х.
Каждое боковое ребро составляет с плоскостью основания угол в 45° - следовательно, все ребра равны, а их проекции равны радиусу описанной около основания пирамиды окружности, Основание высоты пирамиды - центр О описанной окружности. . Величина её радиуса АО равна 2/3 высоты основания.
AH=AB•sin60°=4√3/2=2√3
Высота МО перпендикулярна основанию
∆АМО - прямоугольный, острый угол МАО=45°, следовательно, второй АМО=45°, и высота пирамиды МО=АО=4/√3
Формула объёма пирамиды V=S•h:3
S(∆ABC)=AB²•√3/4=16√3/4=4√3