1) Зависимость площади боковой поверхности S от образующей L;
Косинус половины угла при вершине по теореме косинусов:
cos(α/2) = (R² + L² - R²)/(2RL) = L/2R.
Отсюда синус равен: sin(α/2) = √(1 - (L²/4R²).
Радиус r основания конуса равен:
r = Lsin(α/2) = L√(1 - (L²/4R²).
Тогда S = πrL = πL√(1 - (L²/4R²)L = πL²√(1 - (L²/4R²).
2) Зависимость площади боковой поверхности S от угла α при вершине конуса в его осевом сечении.
Пусть основание конуса ниже центра шара.
Угол φ между радиусами R шара и основания r конуса равен:
φ = 90° - 2(α/2) = 90° - α.
r = Rcosφ = Rcos(90 - α) = Rsin α.
Образующая L равна:
L = r/sin (α/2) = Rsin α/sin(α/2) = R*2sin(α/2)cos(α/2)/sin(α/2) = 2Rcos(α/2).
Тогда S = πrL = πRsin α2Rcos(α/2) = 2πR²sin α*cos(α/2).
3) Зависимость площади боковой поверхности S от угла B при основании конуса.
Аналогично с пунктом 2) S = 2πR²sin 2β*sinβ.
В треугольнике АВС угол С=80°. Найдите градусную меру угла АОВ, если О -точка пересечения биссектрис внешних углов треугольника при вершинах А и В.
Ответ: 50°
Объяснение: Сумма внешних углов многоугольника, взятых по одному у каждой вершины, равна 360°.
Внешний угол при С равен 180°-80°=100°. На сумму внешних углов при А и В приходится 360°-100°=260°.
Тогда в треугольнике АОВ сумма углов при вершинах А и В равна половине суммы внешних углов при А и В треугольника АВС, Т.е. ∠ОАВ+∠ОВА=260°:2=130°
Из суммы углов треугольника угол АОВ=180°-130°=50°