площадь полной поверхности состоит из двух площадей оснований и боковой поверхности. В основании ромб, его площадь ищется по формуле сторона в квадрате умножить на синус угла между сторонами. Т.е. (2√3)²*√3/2= 6√3, но оснований два, поэтому эту площадь умножаем на два. получаем 12√3/см²/
Диагональ ромба по теореме косинусов равна √2(2√3)²-2*(2√3)²1/2=(2√3), а высота призмы находится как диагональ ромба умноженная на tg30°, т.е. (2√3)*(1/√3)=2.
Чтобы найти боковую поверхность, надо периметр основания, т.е. 8√3 умножить на высоту призмы, т.е. на 2 получим 16√3
Сложив теперь полученные площади оснований с площадью боковой поверхности, получим площадь полной поверхности. 12√3+16√3=28√3
ответ верный ответ под номером № 3) , т.е. 28√3
Удачи!
1.Найти радианную меру угла, если его градусная мера равна- 10°, 30°, 150°.
радианная - z
градусная - g
g/180 = z/π
z = g·π/180
z₁ = 10*π/180 = π/18
z₂ = 30*π/180 = π/6
z₃ = 150*π/180 = 5π/6
2. Найти градусную меру угла, если его радианная мера равна: п/5, 2п/3, 7п/6.
g = 180*z/π
g₁ = 180/5 = 36°
g₂ = 180*2/3 = 120°
g₃ = 180*7/6 = 210°
3.Найти длину дуги окружности, радиуса 2см, отвечающей центральному углу 60°.
l = π·r·g/180
l = π*2*60/180 = 2π/3 ≈ 2,094 см
Вариант II
1.Найти радианную меру угла, если его градусная мера равна- 20°, 50°, 160°.
z₁ = 20*π/180 = π/9
z₂ = 50*π/180 = 5π/18
z₃ = 160*π/180 = 8π/9
2. Найти градусную меру угла, если его радианная мера равна: п/8, 3п/2, 5п/4.
g₁ = 180/8 = 22,5°
g₂ = 180*3/2 = 270°
g₃ = 180*5/4 = 225°
3.Найти длину дуги окружности, радиуса 3см, отвечающей центральному углу 80°.
l = π·r·g/180
l = π*3*80/180 = 4π/3 ≈ 4,189 cм