А) (если второй признак- по стороне и двум прилежащим к ней углам) Достаточно сказать, что углы 1) А и М; 2)B и К; 3)С и О равны. В первом случае: Углы В и С равны (по признаку равнобедренного треугольника) Углы К и О равны (по признаку равнобедренного треугольника) <В=<С= (180-<А)/2 <К=<О=(180-<М)/2 А так как <А=<М, то углы В, С, К, О тоже равны. А треугольники АВС и МКО равны по стороне и двум прилежащим к ней углам. Во втором и третьем случае: Углы В и С равны (по признаку равнобедренного треугольника) Углы К и О равны (по признаку равнобедренного треугольника) А так как <В=<К (или <С=<О), то углы В, С, К, О тоже равны. А треугольники АВС и МКО равны по стороне и двум прилежащим к ней углам Б) (если третий признак - по трем сторонам) 1) АВ=МК; 2)АВ=МО; 3) АС=МК; 4)АС=МО Так какАВ=АС И МК=МО( по признаку равнобедренного треугольника), то АВ=АС=МК=МО Значит, треугольники АВС и МКО равны по трем углам
Нарисуй чертеж ВМ=МС=а AN=ND=b (это обозничили мы так) треугольники APN и MPB подобны с коэффициентом b/a,и высоты тоже
треуг. NQD и CQM подобны с тем же коэфф b/a и высоты тоже. но если у треуг. APN и NQD AN=ND, то и высоты равны. Т.е. точки P и Q находятся на одинаковом расстоянии от AD что и требовалось доказать.
если по поводу высот , что они равны , непонятка, то это следует из того, что отношения высот малого и большого треуг. равно одному и тому же коэффициенту, а сумма этих высот постоянна (высота трапеции)
две прямые, параллельные третьей прямой параллельны