Проведем высоту BH S=(AD+BC)* 1/2*ВH. Рассмотрим треугольник АВН. угол А=60 АВ=16, угол ВНА=90. Значит треугольник АВН-прямоугольный угол А+угол АВН=90 градусов( свойство острых углов прямоугльного треугольника) угол АВН=90-60=30 градусов АН=1/2АВ(Свойство катета лежавшего напротив угла в 30 градусов) АН=8 Проведем высоту СN (Там все точно такое же как и в первом треугольнике ) DN=8 Найдем НN HN=AD-(BH+HN) HN=4 Рассмотрим прямоугольник HBCN HN=BC=4 Найдем высоту BH AB=BH+AH каждая сторона в квадрате(теорема Пифагора) BH=AB-AH( каждая сторона в квадрате BH=256-64=192 BH= корень из92=8кореньиз 3 S=(20+4)*1/28* 8 корень из 3=96кореньиз 3
Проведем высоту BH S=(AD+BC)* 1/2*ВH. Рассмотрим треугольник АВН. угол А=60 АВ=16, угол ВНА=90. Значит треугольник АВН-прямоугольный угол А+угол АВН=90 градусов( свойство острых углов прямоугльного треугольника) угол АВН=90-60=30 градусов АН=1/2АВ(Свойство катета лежавшего напротив угла в 30 градусов) АН=8 Проведем высоту СN (Там все точно такое же как и в первом треугольнике ) DN=8 Найдем НN HN=AD-(BH+HN) HN=4 Рассмотрим прямоугольник HBCN HN=BC=4 Найдем высоту BH AB=BH+AH каждая сторона в квадрате(теорема Пифагора) BH=AB-AH( каждая сторона в квадрате BH=256-64=192 BH= корень из92=8кореньиз 3 S=(20+4)*1/28* 8 корень из 3=96кореньиз 3
∠ADB и ∠ACB вписанные, опираются на одну и ту же дугу ==> ∠ADB = ∠ACB
∠ADB = ∠ACB = 80/2 = 40°
Вписанный угол равен половине дуги, на которую он опирается.
◡AB = ∠ADB * 2 = 40 * 2 = 80 (∠ADB - вписанный)
ответ: ◡AB = 80°