Сделаем рисунок и обозначим вершины трапеции АВСD.
Пусть основаниями будут ВС и АD.
По условию задачи ∠А+∠С=90º
Т.к. в треугольнике АВD ∠АВD+∠ВАD=90º, то ∠АВD= ∠ВСD
Если в прямоугольных треугольниках равны один из острых углов, то такие треугольники подобны.
Меньшая диагональ ВD является высотой трапеции - она перпендикулярна основаниям по условию.
Из подобия ᐃ АВD и ᐃ ВСD
АD:ВD=ВD:ВС
18:ВD=ВD:2
ВD²=36
ВD=6
Площадь трапеции равна половине произведения её высоты на сумму оснований.
S=6(2+18):2=60 ( квадратных единиц измерения)
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.