См. рисунок в приложении Пусть ребро АА₁ образует со сторонами основания АВ и AD угол в 60°. Соединяем точку А₁ с точкой D. В треугольнике АА₁D AA₁=2 м AD=1 м ∠A₁AD=60° По теореме косинусов A₁D²=AA₁²+AD²-2·AA·₁AD·cos60°=4+1-2·2·1(1/2)=3 A₁D=√3 м Треугольник A₁AD- прямоугольный по теореме обратной теореме Пифагора: АА₁²=AD²+A₁D² 2²=1+( √3 )² A₁D⊥AD В основании квадрат, стороны квадрата взаимно перпендикулярны АС⊥AD Отсюда AD⊥ плоскости A₁CD ВС || AD BC ⊥ плоскости A₁CD
ВС⊥A₁C
A₁C перпендикулярна двум пересекающимся прямым ВС и СD плоскости АВСD По признаку перпендикулярности прямой и плоскости А₁С перпендикуляр к плоскости АВСD A₁C - высота призмы A₁C=Н Из прямоугольного треугольника A₁DC: А₁С²=А₁D²-DC²=(√3)²-1=3-1=2 A₁C=Н=√2 м
решила те, которые знаю
прости солнышко, что не все
я решала задачи слева направо, с верхнего левого угла
1) сумма углов А и В = 90°
следовательно:
3х = 90
х = 30°
угол А = 2*30° = 60°
угол В = 30°
2) не смогла
3) угол В : угол А = 2 : 3
2х + 3х = 90°(сумма углов А и В)
5х = 90
х = 18°
угол В = 18*2 = 36°
угол А = 18*3 = 54°
4) угол АВС = 60°(т.к. угол АВС и угол в 120° – смежные углы, которые в сумме составляют 180°)
СВ - катет, который лежит напротив угла в 30° => он равен половине гипотенузы
следовательно:
СВ = а (а)
АВ = 2а (с)
по условию: а + с = 26,4 => 3а = 26,4
26,4 : 3 = 8,8
а = 8,8
с = 8,8 * 2 = 17,6
5) ВН = АВ/2 = 6
ВН = НС = 6
6) СВ = 2 * НВ
АВ = 2 * СВ = 8
7) 8) 9) не смогла
будут вопросы - пиши :)