Рискну, все-таки, представить решение. Возьмем произвольную точку С на окружности (O;R). Треугольник АВС - прямоугольный, так как опирается на диаметр. Точка J - центр вписанной в этот треугольник окружности - лежит на пересечении биссектрис углов треугольника АВС. Проведем прямую СJ до пересечения с описанной окружностью (O;R). Точка пересечения D - конец диаметра, так как вписанный <DCB=45° и центральный угол DОВ=90° (при любом положении точки С, исключая точки А и В, так как в этом случае треугольник АВС вырождается). Заметим, что <AJD=(<A+<C)/2, как внешний угол треугольника ACJ. Проведем прямую АJ до пересечения с описанной окружностью (O;R). <BAC1=(1/2)*<A, <DAB=(1/2)*<C (вписанный, опирающийся на одну дугу, что и <DCB). Значит <DAC1=<DAJ=(<A+<C)/2, треугольник DAJ равнобедренный и АD=DJ. И это, как уже отмечалось, при ПРОИЗВОЛЬНОМ положении точки С на окружности, исключая точки А и В. Следовательно, точка J описывает дугу окружности радиуса R√2 c центрами в точках D и E ( в зависимости от расположения точки С относительно диаметра АВ).
Центром вписанной в треугольник окружности является точка пересечения биссектрис углов треугольника. Если точка пересечения биссектрис и точка пересечения медиан совпадают, то медианы треугольника являются и его биссектрисами. Следовательно, данный треугольник - равносторонний. Медианы треугольника пересекаются в одной точке. Точка пересечения медиан делит их в отношении 2:1, считая от вершины. Прямая , параллельная стороне треугольника и равная 2 см, делит его на подобные треугольники с коэффициентом подобия 3:2 (вся медиана - 3 части, от вершины до точки пересечения медиан- 2 части, следовательно, и k=3:2) Тогда таким же будет и отношение сторон всего треугольника к сторонам отсекаемого, т.е. к длине отрезка, на котором лежит центр окружности. Обозначим сторону треугольника а. а:2=3:2 2а=6 а=3 см Периметр - сумма длин всех трех сторон треугольника. Р=3•3=9 cм ---------- Если не прямая, на которой лежит центр окружности, равна 2 см, а сторона треугольника, тогда, естественно, периметр равен 6 см. Главное - определить, что треугольник равносторонний.
Возьмем произвольную точку С на окружности (O;R).
Треугольник АВС - прямоугольный, так как опирается на диаметр.
Точка J - центр вписанной в этот треугольник окружности - лежит на пересечении биссектрис углов треугольника АВС.
Проведем прямую СJ до пересечения с описанной окружностью (O;R).
Точка пересечения D - конец диаметра, так как вписанный
<DCB=45° и центральный угол DОВ=90° (при любом положении точки С, исключая точки А и В, так как в этом случае треугольник АВС вырождается).
Заметим, что <AJD=(<A+<C)/2, как внешний угол треугольника ACJ.
Проведем прямую АJ до пересечения с описанной окружностью (O;R).
<BAC1=(1/2)*<A, <DAB=(1/2)*<C (вписанный, опирающийся на одну дугу, что и <DCB). Значит <DAC1=<DAJ=(<A+<C)/2, треугольник DAJ равнобедренный и АD=DJ. И это, как уже отмечалось, при ПРОИЗВОЛЬНОМ положении точки С на окружности, исключая точки А и В.
Следовательно, точка J описывает дугу окружности радиуса R√2 c центрами в точках D и E ( в зависимости от расположения точки С относительно диаметра АВ).