ответ: неверные: 2, 3.
Объяснение: 1 будет правильно по свойству вертикальных углов.
2 будет неверно из-за того, что смежные углы это два угла у которых 1 сторона общая а две другие являются продолжениями одна другой, а на предоставленном примере несказанно то что у них одна сторона общая судя по этому мы можем сказать то что это два любых различных угла.
3 будет неверно из-за того, что вертикальные углы это два угла у которых стороны одного угла являются продолжением сторон другого, а у нас не сказано то что стороны этих углов являются продолжением друг друга, из чего мы можем сделать вывод то, что это неверно.
4 будет верно.
Продолжим сторону АС треугольника АВС за точки А и С ,
получим прямую ДЕ.
Проведём биссектрису АК угла ВАД, а также биссектрису СМ угла ВСЕ.
ВК⊥АК и ВМ⊥СМ
Продолжим высоты ВК и ВМ до пересечения с ДЕ. На ДЕ получим точки Д и Е.
Рассмотрим ΔАВД. Он равнобедренный, так как АК - биссектриса, а также и высота треугольника АВД . Только в равнобедренном треугольнике биссектриса, проведённая к основанию треугольника, является ещё и высотой.
АВ=АД.
Аналогично, ΔВСЕ - равнобедренный и ВС=СЕ.
Высоты АК и СМ в равнобедренных треугольниках АВД и ВСЕ являются ещё и медианами , значит точка К - середина ВД, а точка М - середина ВЕ.
Рассм. ΔВЕД: КМ - средняя линия ΔВЕД.
ДЕ=ДА+АС+СЕ=АВ+АС+ВС=Р(АВС)=14 см
Средняя линия треугольника равна половине стороны, параллельно которой она проходит, то есть
КМ=1/2*ДЕ=1/2*14=7 см.