По 1.существует ли треугольник с данными сторонами? 7,2 см; 2,8 см и 3,4 см2.высоты проведенные к боковым сторонам ab и ac остроугольного треугольника abc пересекаются в точке n. найти углы треугольника abc если угол bnc = 130°3.докажите что треугольник bkc = треугольнику b₁k₁c₁,если угол b = углу b₁ , угол c = углу c₁; bh=b₁h₁,где bh и b₁h₁ - высоты треугольника bkc и треугольника b₁k₁c₁напишите все с объяснениями и подробно
Найдите величину острого угла параллелограмма АВСД,если биссектриса угла А образует со стороной ВС угол,равный 43°. ответ дайте в градусах.
Биссектриса угла в параллелограмме отсекает от него равнобедренный треугольник. Следовательно, угол, из которого проведена биссектриса, вдвое больше острого угла этого треугольника. Угол А=43°*2=86°
2)
Магазин дает скидку пенсионерам на определенное количество процентов от стоимости покупки. Десяток яиц в магазине стоит 40 рублей, а пенсионер заплатил за них 35 рублей 60 копеек. Сколько процентов составляет скидка для пенсионеров?
40-35,6=4,4(руб) на столько платит пенсионер меньше
Пропорция
40 -→100%
4,4-→х%
х=440:40=11% скидка
3)
Проектор полностью освещает экран А высотой 50 см, расположенный на расстоянии 100 см от проектора. На каком наименьшем расстоянии (в сантиметрах) от проектора нужно расположить экран В высотой 150 см,чтобы он был полностью освещен, если настройки проектора остаются неизменными?
Задача на подобие треугольников.
Высоты экранов пропорциональны расстоянию от проектора до экрана.
150:50=х:100
50х=15000
х=300 (метров)
4)
Дорога между пунктами А и В состоит из подъема и спуска, а ее длина равна 22 км. Турист путь из А в В за 4 часа, из которых спуск занял 3 часа. С какой скоростью турист шел на спуске, если его скорость на подъеме меньше его скорости на спуске на 2 км/ч?
Пусть скорость на подъеме будет х км/ч.
Тогда на спуске х+2 км/ч
В горку турист шел 4-3=1 час и х км.
На спуске он х+2) км, а всего
х+3х+6=22 км
4х=16
х=4 (км/ч) на подъеме.
х+2=6 км/ч
ответ: Турист на спуске шел со скоростью 6 км/ч