если речь 2 и 5 и 8 - нет, не может, потому как сумма 2-х сторон должна быть больше - одной самой большей стороны Сначало прочитал как два с половиной, восемь и другая сторона
Точки В (3 : -6) и С(1 : -2): Δх = 1 - 3 = -2, Δу = -2 - (-6) = -2 + 6 = -4. Не совпадают.
Рассмотрим другое соотношение вершин. точки А(-1 : -2) и В (3 : -6): Δ= 3 - (-1) = 3 + 1 = 4, Δу = -6 - (-2) = -6 + 2 = -4.
точки С(1 : -2) и D(-3 : 6): Δх = -3 - 1 = -4, Δу = 6 - (-2) = 6 + 2 = 8. Не совпадает.
Значит, заданный четырёхугольник - не параллелограмм.
3) Для того, чтобы определить, принадлежит ли точка С(1 : -2) отрезку с концами в точках А( 1 : -4) и В(1 : -6) надо определить соотношение Δх/Δу отрезков СА и СВ. СА: Δх = 1-1 = 0, Δу = -2-(-4) = -2 + 6 = 4. СВ: Δх = 1 -1 = 0, Δу = -6 - (-2) = -6 + 2 = -4. Не совпадают.
Средняя точка между А( 1 : -4) и В(1 : -6) С1(1; -5).
Найти биссектрису большего угла треугольника, если стороны треугольника равны 3см, 4см и 5см. Решение: Треугольник со сторонами 3,4,5 - прямоугольный (египетский). Больший угол прямоугольного треугольника равен 90°. Биссектриса делит сторону, к которой проведена, в отношении прилежащих сторон. Следовательно, она делит гипотенузу в отношении 4:3, т.е. на 7 частей. Пусть биссектриса равна х и разделила треугольник на два со сторонами в каждом: 4; 4*5/7 и х 3; 3*5/7 и х. Для нахождения биссектрисы применим теорему косинусов. Но манипуляции с косинусом 45°=(√2):2 нельзя назвать удобными. Возьмем косинус одного из острых углов 3/5 Тогда стороны меньшего треугольника 3; 15/7 и х( биссектриса) По теореме косинусов х²=9+225/49-6*(15/7)*3/5 х²=288/49=144*2/49 х=(12/7 )*√2 Есть формулы, облегчающие нахождения биссектрисы, (если их знать и помнить). Для биссектрисы из прямого угла это L=√2(ab/(a+b)) где L- биссектриса, a и b - катеты. По этой формуле L=√2*3*4:(3+4)=√2*12/7 При желании можно вычислить, что это составит примерно калькулятору)
если речь 2 и 5 и 8 - нет, не может, потому как сумма 2-х сторон должна быть больше - одной самой большей стороны Сначало прочитал как два с половиной, восемь и другая сторона