Объяснение:
При вращении прямоугольника вокруг стороны 8 см получается цилиндр с высотой 8 см и радиусом основания 6 см.
Площадь полной поверхности цилиндра равна сумме площадей боковой поверхности и удвоенной площади основания.
Площадь боковой поверхности - произведение длины окружности основания и высоты цилиндра:
Sбок=L*Н; L=2πr=2π*6=12π, Н=8, Sбок=12π*8=96π см²;
Sосн=πr²=π*6²=36π; 2Sосн=72π см²;
Sпол.пов.=Sбок+2Sосн=96π+72π=168π см².
Объем цилиндра - произведение площади основания на высоту цилиндра.
Vцил.=Sосн*Н=36π*8=288π см³.
Так как спортивная площадка имеет прямоугольную форму, то ее площадь определяется как площадь прямоугольника (S), то есть путем умножения длины (a) на ширину (b):
S = a х b.
Если известна площадь спортивного участка и его ширина, то можно вычислить его длину:
a = S : b;
a = 11250 : 90 = 125 м.
Р=2(а+b)=2(125+90)=2*215=430(м)
ответ: длина школьной спортивной площадки составляет 125 м, периметр площадки 430 м
Объяснение:
Площадь прямоугольника равна длина умножить на ширину (S=a*b); периметр равен две длины плюс две ширины (Р=2*а+2*b) проще говоря Р=2*(a+b); B -известно надо найти А по формуле площади, т.е. длина равна площадь делить на ширину (a=S/b); a=11250/90=125 метров; ищем периметр по формуле Р=2*(а+b)=2*(125+90)=2*215=430