М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ersyndosmaganbet
ersyndosmaganbet
24.01.2021 16:20 •  Геометрия

Катет BC прямоугольного треугольника ABC равен 10 . Через вершину прямого угла C проведена прямая, от которой вершина A удалена на 3 , а вершина B — на 8 . Определите квадрат гипотенузы AB .

👇
Ответ:
Ivan2367
Ivan2367
24.01.2021

(см. объяснение)

Объяснение:

Первый

Пусть ∠ECB=a. Тогда, т.к. ∠ACB=90°, то 90+\alpha+\angle ACH=180\;=\;\angle ACH=90-\alpha. Соответственно \angle HAC=90-(90-\alpha)=\alpha. Значит треугольник AHC подобен треугольнику BEC по двум углам (∠AHC=∠BEC=90° и ∠ECB=∠HAC=\alpha). Из подобия следует, что \dfrac{AH}{CE}=\dfrac{AC}{BC},\;=\dfrac{3}{6}=\dfrac{AC}{10},\;=AC=5. Тогда по теореме Пифагора для ΔABC: AB^2=25+100=125.

Приведу решение, в котором используется только теорема Пифагора:

Пусть AC=x. AH=3, а BE=8. Тогда из прямоугольного треугольника AHC AC^2=x^2-9,\;=AC=\sqrt{x^2-9}. Из прямоугольного треугольника BCE CE=\sqrt{100-64}=6. Значит HE=\sqrt{x^2-9}+6. Проведем AF - высоту из точки A на BE. Тогда AFEH - прямоугольник => AF=HE=\sqrt{x^2-9}+6. По теореме Пифагора для прямоугольного треугольника AFB (\sqrt{x^2-9}+6)^2+25=AB^2. Но с другой стороны из прямоугольного треугольника ABC AB^2=x^2+100, т.е. получили уравнение (\sqrt{x^2-9}+6)^2+25=x^2+100, откуда x=5, а значит AC=5. Тогда AB^2=25+100=125.

Задача решена!


Катет BC прямоугольного треугольника ABC равен 10 . Через вершину прямого угла C проведена прямая, о
4,6(64 оценок)
Открыть все ответы
Ответ:
chiminswife
chiminswife
24.01.2021
ВМ - медиана, следовательно, АМ=МС=2. 
Пусть точка пересечения окружности и ВС будет Н. 
ВН=СН. 
Угол ВНМ опирается на диаметр, следовательно, он прямой, и
МН - высота треугольника ВМС. Но она же и медиана, т.к. ВН=СН,   следовательно,
треугольник ВМС - равнобедренный и ВМ=МС=2
Медиана треугольника АВС равна половине длины основания. Это один из признаков прямоугольного треугольника. 
Треугольник АВС прямоугольный, АС в нем - гипотенуза. Половина гипотенузы и  медиана в нем является радиусами описанной окружности.


Медиана вм треугольника авс является диаметром окружности , пересекающей сторону вс в ее середине .
4,5(33 оценок)
Ответ:
baandas
baandas
24.01.2021
ВМ - медиана, следовательно, АМ=МС=2. 
Пусть точка пересечения окружности и ВС будет Н. 
ВН=СН. 
Угол ВНМ опирается на диаметр, следовательно, он прямой, и
МН - высота треугольника ВМС. Но она же и медиана, т.к. ВН=СН,   следовательно,
треугольник ВМС - равнобедренный и ВМ=МС=2
Медиана треугольника АВС равна половине длины основания. Это один из признаков прямоугольного треугольника. 
Треугольник АВС прямоугольный, АС в нем - гипотенуза. Половина гипотенузы и  медиана в нем является радиусами описанной окружности.


Медиана вм треугольника авс является диаметром окружности , пересекающей сторону вс в ее середине .
4,5(11 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ