Если соединить последовательно середины сторон выпуклого четырехугольника, то каждый из отрезков будет параллелен диагонали четырехугольника и равен его половине (как средняя линяя в треугольнике, образованном двумя сторонами и диагональю четырехугольника). То есть фигура, образованная этими отрезками - параллелограмм (противоположные стороны параллельны и равны между собой). Причем углы между сторонами параллелограмма равны углам между диагоналями исходного четырехугольника. Отрезки, соединяющие середины противоположных сторон исходного четырехугольника, в этом параллелограмме будут диагоналями. Поскольку по условию эти отрезки равны, то параллелограмм является прямоугольником, углы между его сторонами прямые, следовательно, между диагоналями исходного четырехугольника тоже прямые углы.
A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает