На плоскости даны точки А (1; 9), В (-2; -1), С (-1; -5) и D (1; -6). Запишите координаты вектора и вектора . Запишите координаты суммы векторов и , изобразите на координатной плоскости сумму векторов и .
При вращении кругового сектора АОВ вокруг радиуса ОА получается тело вращения - шаровой сектор радиуса R=ОА и высотой сектора h=DA. Объем его вычисляется по формуле: V= (2/3)*πR²*h. Рассмотрим сечение этого сектора (смотри рисунок): В прямоугольном треугольнике ОВD (радиус круга ОА перпендикулярен хорде ВС) угол ВОD равен 60° (дано). Значит <OBD=30° (сумма острых углов прямоугольного треугольника равна 90°) и катет OD, лежащий против этого угла, равен половине гипотенузы ОВ (R), то есть OD=R/2. Тогда высота шарового сектора равна h=DA=OA-OD=R-R/2=R/2. V=(2/3)*π*R²*R/2=(1/3)πR³.
№1 не сказано какой треугольник, будем считать равносторонний АВС, АВ=ВС=АС, все углы=60, периметр треугольника=3*сторона=3*8=24, площадьАВС=1/2*АВ*ВС*sinB=1/2*8*8*корень3/2=64*корень3/4=16*корень3, радиус описанной = АВ*корень3/3=8*корень3/3, радиус вписанной=1/2радиус описанной=8*корень3/(3*2)=4*корень3/3, №2 КвадратАВСД, АВ=ВС=СД=АС=12, периметр=АВ*4=12*4=48, площадь=АВ в квадрате=12*12=144, радиус вписанной=АВ/2=12/2=6, радиус описанной=АВ*корень2/2=12*корень2/2=6*корень2 , №3 - задание не понятно, в квадрат вписана в окружность или квадрат описан около окружности , необходимо дополнительные пояснения
Объем его вычисляется по формуле: V= (2/3)*πR²*h.
Рассмотрим сечение этого сектора (смотри рисунок):
В прямоугольном треугольнике ОВD (радиус круга ОА перпендикулярен хорде ВС) угол ВОD равен 60° (дано). Значит <OBD=30° (сумма острых углов прямоугольного треугольника равна 90°) и катет OD, лежащий против этого угла, равен половине гипотенузы ОВ (R), то есть OD=R/2.
Тогда высота шарового сектора равна h=DA=OA-OD=R-R/2=R/2.
V=(2/3)*π*R²*R/2=(1/3)πR³.