За умовою задачі в Δ АВС сторона АВ = 14 см, ВС = 10 см, АС = 16 см.
Так як М за умовою середина АВ, то АМ = МВ = АВ : 2 = 14 : 2 = 7 (см)
Так як точка К за умовою середина АС, то АК = КС = АС : 2 = 16 : 2 = 8 (см)
Так як точка М – середина АВ і точка К – середина АВ, то відрізок МК – середня лінія трикутника.
Середня лінія трикутника паралельна третій стороні і дорівнює її половині (властивість середньої лінії трикутника). Значить МК = ВС : 2 = 10 : 2 = 5 (см)
Знайдемо периметр трикутника АМК:
Р = АМ + АК + МК = 7 + 8 + 5 = 20 (см)
Відповідь: 20 см
Запишите уравнение плоскости, проходящей через точки M0(−4,7,1) и M1(−4,8,0) параллельно вектору e¯¯¯={1,9,−6}.
Вектор М0М1 лежит в искомой плоскости, поэтому нормальный вектор этой плоскости найдём как векторное произведение векторов М0М1 и е.
М0М1 = (-4-(-4); 8-7; 0-1) = (0; 1; -1).
Найдём векторное произведение по схеме Саррюса.
М0М1 x e = I j k| I j
0 1 -1| 0 1
1 9 -6 | 1 9 = -6i – 1j + 0k + 0j + 9i – 1k =
= 3i – 1j – 1k.
Найден нормальный вектор (3; -1; -1).
Теперь по точке M0(−4,7,1) и нормальному вектору (3; -1; -1) составляем уравнение искомой плоскости.
3(x + 4) – 1(y – 7) – 1(z – 1) = 0.
3x +12 – y + 7 – z + 1 = 0.
3x – y – z + 20 = 0.
ответ: 3x – y – z + 20 = 0.