При пересечениинайдите смежные углы 1 и 2 если угол 1 на 112 градусов больше угла 2 двух прямых сумма двух вертикальных углов равна 88 градусов найдите углы полученные при пересечении этих прямых.
два симметричных треугольника с катетами a и a*tg15
Искомая площадь равна
S= a^2(1 -1/8 -tg15) =a^2(8√3 -9)/8
R - радиус описанной окружности
Сторона квадрата a =R√2
Сторона треугольника 12 =R√3
a= 12*√2/√3 =4√6
S= 12(8√3 -9) =96√3 -108
Центр окружности - на пересечении диагоналей квадрата. Треугольник имеет с квадратом общую вершину, следовательно серединный перпендикуляр к основанию совпадает с диагональю квадрата.
Рассмотрим треугольник АВС. АВС – прямоугольный треугольник, угол С = 90 градусов – прямой, угол СВА (В) = 30 градусов, АВ =12 см – гипотенуза. В треугольнике АВС найдем, используя теорему Пифагора, катет ВС. Для этого сначала нужно найти катет АС. Катет АС равен АВ/2, так как АС лежит против угла в 30 градусов, а из свойств прямоугольного треугольника известно, что против угла в 30 градусов лежит катет, который равен половине гипотенузы: АС = АВ/2 = 12/2 = 6 (см). Найдем катет ВС: ВС = √( АВ^2 – АС^2) = √(12^2 – 6^2) = √(144-36) = √108 (см). 2. Рассмотрим треугольник BCD. BCD - прямоугольный треугольник (CD – высота, поэтому образует с АВ прямой угол). В прямоугольном треугольнике BCD угол BDC = 90 градусов, угол DBC = 30 градусов по условию, ВС = √108 см – гипотенуза, так как лежит против прямого угла BDC. Нам нужно найти катет BD. Для начала найдем катет DC. DC лежит против угла в 30 градусов, поэтому равен половине гипотенузы: DC = ВС/2 = √108/2 (см). Теперь по теореме Пифагора найдем катет BD: BD = √(BC^2 – DC^2) = √((√108)^2 – (√108/2)^2) = √(108 – 108/4) = √(108 – 27) = √81 = 9 (см). ответ: BD = 9 см.
От квадрата со стороной a отсечены:
треугольник, равный 1/8 площади квадрата
два симметричных треугольника с катетами a и a*tg15
Искомая площадь равна
S= a^2(1 -1/8 -tg15) =a^2(8√3 -9)/8
R - радиус описанной окружности
Сторона квадрата a =R√2
Сторона треугольника 12 =R√3
a= 12*√2/√3 =4√6
S= 12(8√3 -9) =96√3 -108
Центр окружности - на пересечении диагоналей квадрата. Треугольник имеет с квадратом общую вершину, следовательно серединный перпендикуляр к основанию совпадает с диагональю квадрата.
AO/OH =2/1 (AH - медиана), AO=OC (радиусы) => OC/OH =2/1.
BD⊥AC, EF⊥AC => BD||EF. По теореме Фалеса EF делит стороны BC и CD в том же отношении, что и OC, то есть пополам.
DAE= (DAB-EAF)/2 =(90-60)/2 =15
tg15 =tg(30/2) =(1-cos30)/sin30 =2(1-√3/2) =2-√3