Углы и — вертикальные. Очевидно,вертикальные углы равны, то есть
Конечно, углы и , и — тоже вертикальные.
Углы и — смежные, это мы уже знаем. Сумма смежных углов равна 180° .
Углы и (а также и , и , и ) — накрест лежащие. Накрест лежащие углы равны.
,
,
1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.
гипотенуза^2=первый катет^2+второй катет^2;катет=корень из разности гипотенузы и катета!
c=(15^2-12^2)под корнем
с=81 под корнем
с=9
ответ: второй катет равен 9см
Ну если периметр 34 и одна сторона 5, то другая (34 - 5 - 5)/2 = 12см.
Далее по теореме Пифагора находим диагональ. 12^2 + 5^2 = x^2, где x - Диагональ. решая уравнение, получаем, что х = 13см а - основание
а=8,
половина основания=4
в - боковая сторона
в=корень(4^2+3^2)=5
p=5+5+8=18 см
Если рассматривать диагональ квадрата как гипотенузу прямоугольного треугольника, то из теоремы Пифагора следует свойство: а^2+a^2=d^2
(примечание: sqrt-корень квадратный; а^2- "а" в квадрате; а-сторона; d-диагональ)
2a^2=sqrt8^2
2a^2=8
a^2=4
a=sqrt4
a=2см
задача5
Проведи высоты. Получится 2 равных прямоугольных треугольника с катетами, один из которых = высоте трапеции 4 см, а другой = 1/2 разности оснований трапеции: (6-3)/2 = 1,5 см => боковые стороны будут V(4^2 + 1,5^2) = V18,25 = 4,272...= 4,3 =>
Периметр будет 6+3+2*4,3 = 17,6 см