"египетский" треугольник, подобный (3,4,5). Стороны 9,12,15. Расстояние от основания медианы к гипотенузе (то есть от середины гипотенузы) до катета 12 равно 9/2. А точка пересечения медиан на треть медианы ближе к вершине перяого угла, то есть расстояние от неё до катета 12 составит (2/3)*(9/2) = 3.
А можно и так. Медиана к гипотенузе равна 15/2, а точка пересечения медиан лежит на расстоянии (2/3)*(15/2) = 5 от прямого угла. При этом, если опустить перпендикуляр из этой точки на катет (да любой :)) в данном случае - на катет 12), то поучится ОПЯТЬ "египетский" треугольник, причем самый настоящий - (3,4,5). Доказательство этого совершенно очевидного факта такое - медиана образует с катетами углы, равные углам треугольника, поскольку разбивает треугольник на два равнобедренных. Отсюда следует подобие построенного треугольника исходному.
Ну, вот так само собой и получилось, что расстояние от точки пересечения медиан до катетов 3 и 4. Нужное по задаче расстояние 3.
1)75,75,105,105
2)40,140
3)20,160
4)80,100,80
5)10,10,170,170
Объяснение:
1)там есть две пары вертикальных углов,они равны, сумма всех углов 360°,значит сумма двух разных углов равна 180°,но один больше другого на 30,поэтому получается,что d+b=180°
b+30°+b=180°
2b=150°
b=75°
d=105°
2)b+d=180°
b=d+100°
2d=180°-100°
2d=80°
d=40°
b=140°
3)b+d=180°
b=8d
9d=180°
d=20°
b=(20°)*8=160°
4)см пункт 1,есть 2 пары вертикальных углов,они равны между собой
то есть 2 угла из 4 : 100°
сумма всех 360°
(360°-100°-100°)/2=80°
то есть углы:80°,100°,80°
5)b=x
d=17x
b+d=180°
17x+x=180°
18x=180°
x=10°
b=10°
d=170°