Пусть угол СВD - 2х, тогда угол ABD - 3 х. Получем уравнение: 2х + 3х = 90 градусов (так как угол В - прямой). 5х=90 х=18 Если х =18, тогда угол СBD(2x) = 18 * 2 = 36 (градуса), а угол ABD (3х) = 18 * 3 = 54(градуса). Проверим: Угол CBD + ABD = B, 36 град + 54 град = 90 градусов (все верно) Так как диагонали в прямоугольнике равны, то равны ВО и СО, а значит треугольник ВОС - равнобедренный и угол ВОС = 36 градусов (угол CBD = BOC). Угол ВОС = 180 - (36+36) = 108 градусов ответ: Угол ВОС = 108 градусов
Находим координаты точки М - середины стороны ВС: М((3+2)/2=2,5; (4+1)/2=2,50 = (2,5; 2,5). Уравнение медианы АМ : (Х-Ха)/(Хм-Ха) = (У-Уа)/(Ум-Уа). Подставив координаты точек, получаем каноническое уравнение:: , или приведя к целым знаменателям Приведя к общему знаменателю, получаем обще уравнение медианы АМ: Х - 9У + 20 = 0. Или в виде уравнения с коэффициентом: у = (1/9)х + (20/9).
Высота АД перпендикулярна АС, поэтому составляем уравнение стороны АС: АС: (х+2)/4 = (у-2)/-1, АС: х+4у-6=0, АС: у = -(1/4)х+(6/4). Коэффициент а высоты ВД равен -1/(-(1/4)) = 4. Подставим координаты точки В: 4= 4*3+С, отсюда С = 4-12 =-8. Уравнение высоты ВД: у = 4х-8.
Для определения углов нужны длины сторон: АВ = √((Хв-Ха)²+(Ув-Уа)²) = √29 ≈ 5.385164807, BC = √((Хc-Хв)²+(Ус-Ув)²) = √10 ≈ 3.16227766, AC = √((Хc-Хa)²+(Ус-Уa)²) = √17 ≈ 4.123105626.
cos C= (АC²+ВС²-АВ²)/(2*АC*ВС) = -0.076696 (по теореме косинусов). Угол С равен 1.647568 радиан или 94.39871 градусов.
Пусть угол СВD - 2х, тогда угол ABD - 3 х. Получем уравнение:
2х + 3х = 90 градусов (так как угол В - прямой).
5х=90
х=18
Если х =18, тогда угол СBD(2x) = 18 * 2 = 36 (градуса), а угол ABD (3х) = 18 * 3 = 54(градуса). Проверим: Угол CBD + ABD = B, 36 град + 54 град = 90 градусов (все верно)
Так как диагонали в прямоугольнике равны, то равны ВО и СО, а значит треугольник ВОС - равнобедренный и угол ВОС = 36 градусов (угол CBD = BOC).
Угол ВОС = 180 - (36+36) = 108 градусов
ответ: Угол ВОС = 108 градусов