М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Папарапдрд
Папарапдрд
16.01.2021 20:24 •  Геометрия

точка d лежит вне плоскости треугольника abc. На отрезке BA, BC и BD выбраны соответственно точки K, F и E так, что BK: BA= BF: BC=BE : BD. Докажите что плоскость KEF и ADC параллельны

👇
Ответ:
KatyshaBym
KatyshaBym
16.01.2021
Добрый день! Давайте разберемся с этим вопросом.

Для начала, давайте проясним, что означает "плоскость KEF и ADC параллельны". Это означает, что плоскость KEF и плоскость ADC не пересекаются и направлены в одном и том же направлении.

Для доказательства параллельности плоскостей KEF и ADC, мы можем воспользоваться свойством параллельности плоскостей, которое гласит: если взять две плоскости и провести через них две параллельные прямые, то все прямые, параллельные одной из них, параллельны также и второй плоскости.

Теперь давайте обратимся к условиям задачи. Мы знаем, что точка d лежит вне плоскости треугольника abc и на отрезке BA, BC и BD выбраны соответственно точки K, F и E так, что BK: BA= BF: BC=BE : BD.

По условию, отношения коэффициентов BK: BA, BF: BC и BE : BD должны быть равны между собой. Давайте напишем эти равенства:

1) BK: BA = BF: BC
2) BF: BC = BE : BD

Так как отношения равны, то мы можем записать:

1) BK / BA = BF / BC
2) BF / BC = BE / BD

Теперь рассмотрим треугольники BKE и BDF. Мы знаем, что:

1) BK / BA = BF / BC (из первого равенства)
2) BE / BD = BF / BC (из второго равенства)

Мы видим, что отношения BK / BA и BE / BD равны отношению BF / BC.

Рассмотрим теперь треугольник ABC. Мы знаем, что точка d лежит вне плоскости этого треугольника. То есть, отрезок AD не параллелен плоскости ABC.

Теперь вспомним свойство параллельности плоскостей, о котором упоминалось ранее. Если мы проведем через две параллельные прямые расположенные в разных плоскостях, то все прямые, параллельные одной из них, параллельны и второй плоскости.

Так вот, рассмотрим параллельные прямые AK и BF, которые лежат на разных плоскостях. Мы можем сказать, что прямая KE также параллельна плоскости ABC, так как BK / BA = BF / BC.

То же самое можно сказать и про прямую EF, так как BF / BC = BE / BD. То есть, прямая EF также параллельна плоскости ABC.

Таким образом, плоскость KEF параллельна плоскости ABC.

Теперь мы можем перейти к доказательству параллельности плоскостей KEF и ADC.

Мы знаем, что прямая KE параллельна плоскости ABC, и точка d лежит вне плоскости ABC. Тогда прямая KD (проходящая через точку d) должна быть перпендикулярна плоскости ABC.

Также мы знаем, что прямая EF параллельна прямой KD и совпадает с плоскостью KEF. Значит, плоскость KEF и прямая KD параллельны.

Теперь мы можем сделать последний шаг. Мы знаем, что прямая DC также перпендикулярна плоскости ABC, так как лежит в этой плоскости. А прямая KD, как уже было замечено, перпендикулярна плоскости ABC.

Теперь вспомним свойство параллельности плоскостей, о котором говорилось ранее. Если взять две плоскости, каждая из которых параллельна прямой, которая перпендикулярна общей плоскости, то эти две плоскости параллельны.

Таким образом, плоскость KEF и плоскость ADC параллельны.

Я надеюсь, что я смог вам понятно объяснить решение данной задачи. Если у вас возникнут дополнительные вопросы, пожалуйста, не стесняйтесь задавать их.
4,6(82 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ