Боковая сторона трапеции равна 17 см ---Надо посмотреть на параллельные прямые (верхнее и нижние основание) и секущую (диагональ) . Посмотреть, какие углы равны между собой, увидеть равнобедренный треугольник, у которого углы при основании ( это диагональ) равны. Значит и боковые стороны равны. Боковая сторона трапеции равна большему основанию.
Опустить из тупого угла высоту на большее основание. В полученном прямоугольном треугольнике ( один катет 8 см, гипотенуза 17 см) найти второй катет по теореме Пифагора. Это и будет высота трапеции -- 15 см
Дальше по формуле площади ---1/2(1 + 17) * 15 = 135 кв. см
DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.