Если соединить концы заданных отрезков x и y, получится параллелограмм, причем каждая из сторон будет параллельна диагонали четырехугольника и равна половине этой диагонали. Дело в том, что диагональ любого выпуклого четырехугольника делит его на два треугольника, и отрезок, соединяющий середины СОСЕДНИХ сторон, является в этом треугольнике средней линией. Поэтому такой отрезок параллелен диагонали и равен её половине.
Итак, у нас есть ПАРАЛЛЕЛОГРАММ, у которого заданы диагонали x и y, и угол между ними 60 градусов. Надо найти стороны (потом достаточно умножить результат на 2, и получится ответ).Если сразу обозначить искомые диагонали m и n, то стороны параллелограмма будут m/2 и n/2.
По теореме косинусов (ясно, что диагонали параллелограмма пересекаются в их серединах)
(m/2)^2 = (x/2)^2 + (y/2)^2 - 2*(x/2)*(y/2)*cos(60)
m^2 = x^2 + y^2 - x*y;
Аналогично
n^2 = x^2 + y^2 + x*y;
В сущности, это и есть ответ. :
m = корень(x^2 + y^2 - x*y);
n = корень(x^2 + y^2 + x*y);
ОН - відстань від т. О до більшої сторони прямокутника ВС (отже ОН - висота трикутника ВСО)
ОМ - відстань від т. О до більшої сторони прямокутника АД (отже ОМ - висота трикутника АДО)
ОР - відстань від т. О до меншої сторони прямокутника АВ (отже ОР - висота трикутника АВО)
ОК - відстань від т. О до меншої сторони прямокутника СД (отже ОК - висота трикутника СДО)
Оскільки Діагоналі прямокутника мають однакову довжину, а також в точці перетину діляться навпіл, значить трикутник ВСО=трикутнику АДО та трикутник АВО=трикутнику СДО.
А це означає, що і висоти у попарно рівних трикутниках між собою рівні, а саме
ОК=ОР, а ОН=ОМ.
Виходить, що ОН=ОМ=4 см та ОК=ОР=9 см (по умові задачі сказано, що точка перетину його діагоналей віддалена від його сторін на 4 см і на 9 см).
У прямокутника протилежні сторони рівні.
АВ=СД=ОН+ОМ=4+4=8 см
ВС=АД=ОР+ОК=9+9=18 см
Периметр = сумі довжин усіх сторін прямокутника
Периметр = АВ+ВС+СД+АД
Отже
Периметр = 8+18+8+18=52 см
Відповідь: периметр прямокутника=52 см