Так как АВ и CD - это диаметры окружности, то точкой О они делятся пополам. Тогда АО = ОВ = СО = ОD = АВ/2 = CD/2.
АВ = 12, тогда: АО = ОВ = СО = ОD = 12/2 = 6 (см).
Углы СОВ и АОD равны, так как являются вертикальными углами, образованными пересечением двух прямых.
Рассмотрим два треугольника СОВ и АОD: угол СОВ = угол АОD, АО = ОВ = СО = ОD = 6 см. Треугольники СОВ и АОD равны по двум сторонам и углу между ними. Тогда AD = CB = 10 см.
Периметр треугольника АОD:
Р = АО + ОD + АD;
Р = 6 + 6 + 10 = 22 (см).
ответ: Р = 22 см.
Объяснение:
Так как АВ и CD - это диаметры окружности, то точкой О они делятся пополам. Тогда АО = ОВ = СО = ОD = АВ/2 = CD/2.
АВ = 12, тогда: АО = ОВ = СО = ОD = 12/2 = 6 (см).
Углы СОВ и АОD равны, так как являются вертикальными углами, образованными пересечением двух прямых.
Рассмотрим два треугольника СОВ и АОD: угол СОВ = угол АОD, АО = ОВ = СО = ОD = 6 см. Треугольники СОВ и АОD равны по двум сторонам и углу между ними. Тогда AD = CB = 10 см.
Периметр треугольника АОD:
Р = АО + ОD + АD;
Р = 6 + 6 + 10 = 22 (см).
ответ: Р = 22 см.
Объяснение:
Треугольник ABD: угол В =60, угол ADB = 90, угол BAD= 90-60=30
Треугольник AOF: угол AFO = 90, угол FAO = 30, угол AOF = 90-30=60
В трапецию можна вписать круг при условии, что сумма боковых сторон = сумме оснований.
Периметр = сумма боковых сторон + сумма оснований
Сумма оснований = 128/2=64
Средняя линия трапеции= 1/2 Сумма оснований = 64/2=32