1. Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1. S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r. значит можно. 2. Не может. k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ . Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂. CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃. DB =BE ⇒k₂ =2k₁ ; EC =CF ⇒k₃ =2k₂ =4k₁ . AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁ ⇒ AB+BC< AC ,что невозможно.
Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂. DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.
Поскольку MP II AB; то ∠MPB = ∠PBA; а так как BP - биссектриса ∠ABC; то ∠MPB = ∠PBA = ∠PBC; следовательно, треугольник BMP равнобедренный, MB = MP; Если теперь вспомнить (именно в этот момент :) ), что точка M - центр окружности, описанной вокруг ABC, то есть MB = MC = MA; то это значит, что точка P тоже лежит на описанной окружности. Получается, что ∠ACP и ∠ABP оба вписанные в окружность, описанную вокруг треугольника ABC и опираются на дугу AP этой окружности. Поэтому они равны. Очевидно, что ∠ABP равен половине ∠ABC; поэтому ответ ∠ACP = 32,5°
МК = 4 см
Объяснение:
Дано:
∆АВС, Р(АВС) = 30 см
К € АС; АК = КС = 6 см
М € ВС; ВМ = МС = 5 см
Найти:
МК = ?
1) Найдем длины сторон АС и ВС:
К € АС; АК = КС = 6 см => АС = 2•6 = 12 см
М € ВС; ВМ = МС = 5 см => ВС = 2•5 = 10 см
АС = 12 см; ВС = 10 см
2) Найдем длину АВ:
Р(АВС) = АВ + ВС + АС => АВ = Р(АВС) - ВС - АС
АВ = 30 - 10 - 12 = 30 - 22 = 8 см
АВ = 8 см
3) Найдем длину МК:
К € АС; АК = КС; М € ВС; ВМ = МС =>
=> МК - средняя линия ∆АВС, МК || АВ =>
=> МК = 1/2 АВ = 1/2 • 8 = 4
МК = 4 см