Из вершины B трапеции опустим на основание AD высоту BE и из вершины C - высоту CK.Тогда, поскольку угол BCD=150 градусов, то угол KCD=150-90=60 градусов.
Из треугольника KCD имеем
KD=CD*sin(KCD)=12*√3/2=6√3
CK=CD*cos(KCD)=12*1/2=6
CK=BE=6
Из треугольника ABE, имеем
tg(BAE)=BE/AE =>AE=BE/tg(BAE)=6/tg(75)=6/tg(45+30)=6:(tg45+tg30)/(1-tg45*tg30)=6:(1+(1/√3))/(1-(1/√3))=6:(√3+1)/(√3-1)=6:((√3+1)(√3+1))/((√3-1)(√3+1))=6:(3+1+2√3)/2=6/(2+√3)
AD=AE+EK+KD=6/(2+√3)+4+6√3=(6+8+4√3+12√3+18)/(2+√3)=(32+16√3)/(2+√3)=16
Площадь трапеции равна
S=((a+b)/2)*H
для нашего случая, имеем
S=((4+16)/2)*6=60
Площадь равна 60,вариант 2
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
Не всегда, тут зависит от задачи, в некоторых необходимо записать что сторона BC принадлежит треугольнику aBC
Объяснение: