Из середины ребра ДА проводим прямую параллельно ребру ДС и вторую параллельно ребру ДВ это будут средние линии боковых граней. Соединим точки пересечения указанных прямых с рёбрами основания прямой. Получим в сечение треугольник. Поскольку две построенные пересекающиеся прямые параллельны двум пересекающимся прямым другой плоскости значит плоскость сечения параллельна боковой грани ДВС. Полученный треугольник сечения подобен треугольникам правильного тетраэдра так как все его стороны средние линии правильных треугольников граней и равны а/2. По формуле площадь сечения как площадь равностороннего треугольника равна S= (а /2)квадрат*(корень из 3)/4.= (а квадрат)*(корень из3)/16.
Так как эти треугольники подобны, то подобны и их соответственные элементы (в нашем случае биссектрисы). Поэтому коэффициент подобия треугольников АСН и ВСН равен 1/3.
Из подобия следует соотношение сторон этих треугольников: АН/СН = СН/ВН = АС/ВС = 1/3
Нас интересует последнее соотношение, дающее нам катеты исходного прямоугольного треугольника АВС.
Пусть АС = х, то ВС = 3х, и по т. Пифагора имеем:
х² + 9х² = (2√5)²
10х² = 20
х = √2
АС = √2, ВС = 3√2
Площадь треугольника АВС равна половине произведения катетов:
1/2×√2×3√2 = 3
ответ: 3