Разместим внутри нашего квадрата маленькие квадратики, как показано на рисунке. Попробуем найти количество таких квадратиков и длину стороны каждого, чтобы общая сумма их периметров была равна 1992.

Обозначим число маленьких квадратиков вдоль стороны через N, а длину сторон маленьких квадратиков через A. Сумма периметров этих квадратиков будет равна 4N2A, а нам надо, чтобы эта сумма была равна 2020, т.е. 4N2A = 2020. Поскольку вдоль большого квадрата размещается N квадратиков со стороной A, то NA  1 и NA < 1. Значит, 4N > 1992 и 4N  2020 т.е. N  498. Взяв N = 500, A = 0, 002020, получим набор квадратиков, сумма периметров которых будет равна 0, 0020204500500 = 2020, что и требовалось.
Острый угол 60°, => меньшая диагональ ромба =36. из тупого угла в 120° опущена высота на сторону ромба. рассмотрим прямоугольный треугольник, образованный меньшей диагональю ромба 36 -гипотенуза, высотой к стороне -катет и отрезком стороны - катет против угла 30°, он равен 36:2=18. следовательно другой отрезок так же равен 18 см
или другое рассуждение: меньшая диагональ разделила ромб на на 2 равных равносторонних треугольника. высота опущенная из тупого угла -это высота правильного треугольника, которая является биссектрисов и медианой, => 36:2=18 ответ: отрезки по 18
Объяснение:
Разместим внутри нашего квадрата маленькие квадратики, как показано на рисунке. Попробуем найти количество таких квадратиков и длину стороны каждого, чтобы общая сумма их периметров была равна 1992.

Обозначим число маленьких квадратиков вдоль стороны через N, а длину сторон маленьких квадратиков через A. Сумма периметров этих квадратиков будет равна 4N2A, а нам надо, чтобы эта сумма была равна 2020, т.е. 4N2A = 2020. Поскольку вдоль большого квадрата размещается N квадратиков со стороной A, то NA  1 и NA < 1. Значит, 4N > 1992 и 4N  2020 т.е. N  498. Взяв N = 500, A = 0, 002020, получим набор квадратиков, сумма периметров которых будет равна 0, 0020204500500 = 2020, что и требовалось.