М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
zavarinaira100
zavarinaira100
13.10.2022 16:13 •  Геометрия

Вправильной треугольной пирамиде sabc c основанием abc проведено сечение через вершину s и середины ребер ab и bc найдите расстояние от плоскости этого сечения до центра грани sac если все ребра пирамиды равны 6

👇
Ответ:
katyaydalova15
katyaydalova15
13.10.2022

См. чертеж.

К - середина АС. Поскольку центр SAC лежит на SK на расстоянии SK/3 от К, то искомое расстояние равно 2/3 от KQ, где KQ перпендикуляр к SP (необходимые перпендикулярности всех прямых и плоскостей докажите сами, там все просто), Р - середина MN. 

Если ребро пирамиды a = 6, то PN = a/4; (тут была ошибка! - приношу извинения)

SN = a√3/2;

Отсюда SP = √(SN^2 - PN^2) = a√(3/4 - 1/16) = a√11/4; 

Прямоугольные треугольники SOP и PQK имеют общий острый угол KPS, поэтому они подобны.

Поэтому SO/SP = KQ/КР;

SO - это высота тетраэдра, SO = a√(2/3);

КР = a√3/4 (половина высоты грани)

получается 

KQ = (a√(2/3)) (a√3/4)/(a√11/4) = a√(2/11); 

Соответственно, искомое расстояние от центра грани SAC до KP (то есть до плоскости SMN, что то же самое - это надо доказать тоже) равно (2/3)KP = 2a√(2/11)/3 = 4√(2/11);

 

Численно √(2/11) = 0,4264.... с точностью до 5 знака после запятой (именно так :)) Но это все-таки лучше, чем первоначальный ответ, в котором катет KQ был больше гипотенузы KP.


Вправильной треугольной пирамиде sabc c основанием abc проведено сечение через вершину s и середины
4,5(83 оценок)
Открыть все ответы
Ответ:
nikitakondrate1
nikitakondrate1
13.10.2022
В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой .
Дано:
DABC - равнобедренный;
AB - основание. CD - медиана .

Док-ть:
CD - высота и биссектриса .

Доказательство:

CA=CD - по условию
РA= РB - по свойству равнобедренного треугольника
AD=DB т. к. CD - медиана ,
ЮDCAD=DCBD (по 1-ому признаку равенства треугольников)
ЮРACD= РBCD, РADC= РBDC
РACD=РBCD Ю CD - биссектриса
РACD и РBCD - смежные и равны
Ю РACD и РBCD - прямые Ю CD - высота треугольника. ещё доказательство: http://oldskola1.narod.ru/Nikitin/0018.htm
4,7(19 оценок)
Ответ:
aigulzhan
aigulzhan
13.10.2022

Объяснение:

Проведём перпендикуляр в точке О. Я его назвал H1H2. Точка О лежит на средней линии трапеции (так как концы этого отрезка на серединах сторон). Средняя линия параллельна основаниям (такое свойство у средней линии трапеции). Значит H1H2 перпендикулярно и средней линии и основаниям.

Докажем, что H1O=H2O, это можно сделать по теореме Фалеса, утверждающей, что параллельные прямые отсекают на секущих равные отрезки, (отрезки на боковой стороне равны, значит и на перпендикуляре равны).

И теперь рассматриваем треугольники AOH2 и COH2, о чудо они равны по 2 углам и стороне между ними (OH2=OH1, только что доказали, угол AH2O=OH1C=90 (там перпендикуляры), угол AOH2=COH1 как вертикальные)

А если треугольники равны, то и стороны против равных углов в них равны (есть такая теорема) значит и AO=OC равны ч.т.д.


Подпишусь , ответ сделаю лучшим , 5 звезд , скажу ! ​
4,6(89 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ