1. Властивості паралелограма
У паралелограмі протилежні кути рівні. У паралелограмі сума кутів, прилеглих до однієї сторони, дорівнює 180°. Діагоналі паралелограма перетинаються і точкою перетину діляться навпіл. Діагоналі паралелограма ділять його на два рівні трикутники.
2.Властивості прямокутника
Діагоналі прямокутника рівні. Діагоналі прямокутника перетинаються і точкою перетину діляться навпіл. Діагоналі прямокутника ділять його на два рівні трикутники. У прямокутника сума кутів, прилеглих до однієї сторони, дорівнює 180°.
3.Властивості ромба
Це паралелограм, діагоналі якого розділяють внутрішній кут Протилежні кути ромба рівні. Діагоналі ромба перетинаються під прямим кутом, точка перетину є серединою кожної діагоналі. Діагоналі ромба є бісектрисами кутів, з яких вони проведені.
4.Квадратом називають прямокутник, у якого всі сторони рівні (мал. ... 4) Діагоналі квадрата перпендикулярні і точкою перетину діляться пополам. На малюнку 252: АС BD і АО = ВО = CO = DO (враховуючи властивість 3). 5) Діагоналі квадрата ділять його кути пополам, тобто утворюють зі сторонами квадрата кути 45°.
5. Чаще всего трапеции делят на неравнобедренные (разнобокие), равнобедренные (равнобокие) и прямоугольные.
У разнобоких трапеций боковые стороны не равны друг другу. ...
У равнобедренных трапеций боковые стороны равны друг другу. ...
У прямоугольных трапеций одна боковая сторона перпендикулярна основаниям.
Середньою лінією трапеції називають відрізок, що сполучає середини її бічних сторін. Властивість середньої лінії трапеції: Середня лінія трапеції паралельна основам і дорівнює їх півсумі.
6.Відрізок, що сполучає середини двох сторін трикутника, називається середньою лінією трикутника. Середня лінія трикутника паралельна одній із його сторін і дорівнює половині цієї сторони. У кожному трикутнику є три середні лінії.
7.
8. Теорема Фалеса: якщо паралельні прямі, що перетинають дві задані прямі а і b, відтинають на одній прямій рівні відрізки, то вони відтинають рівні відрізки й на іншій прямій.
9. 1. Якщо два кути одного трикутника відповідно дорівнюють двом кутам іншого, то такі трикутники подібні.
2.Якщо дві сторони одного трикутника пропорційні двом сторонам іншого трикутника і кути, утворені цими сторонами рівні, то такі трикутники подібні.
3. Якщо три сторони одного трикутника пропорційні трьом сторонам іншого, то такі трикутники подібні.
10.
11. У прямокутному трикутнику площа квадрата, побудованого на гіпотенузі, дорівнює сумі площ квадратів, побудованих на катетах.
12. sin = протилежний катет/гіпотенузу
cos = лежащий катет/гіпотенузу
tg = протилежний катет/лежащий катет
ctg = лежащий катет/протижелжний катет
13. S = ab*sin а S = ah S = 0.5*d1*d2*sin Y
14. S = 0.5a*h*a S = a*b*sinY S = abc/4R S = p*r S= (sqrt(p(p-a)*(p-b)*(p-c)) p = (a+b+c)/2
15. S = 0.5*(a+b)*h S = ((a+b)/2)*h
Объяснение: За цей ответ ти маєш мені отсосать, але сьогодні я добрий і роблю це за 7 балів.
Теорема 1 (теорема Фалеса). Параллельные прямые высекают на пересекающих их прямых пропорциональные отрезки (рис. 1).
Определение 1. Два треугольника (рис. 2) называются подобными, если соответствующие стороны у них пропорциональны.
Теорема 2 (первый признак подобия). Если угол первого треугольника равен углу второго треугольника, а прилежащие к этим углам стороны треугольников пропорциональны, то такие треугольники подобны (см. рис. 2).
Теорема 3 (второй признак подобия). Если два угла одного треугольника равны соответственно двум углам другого треугольника, то такие треугольники подобны (рис. 3).
Теорема 4 (теорема Менелая). Если некоторая прямая пересекает стороны AB и BC треугольника ABC в точках X и Y соответственно, а продолжение стороны AC — в точке Z (рис. 4), то
Теорема 5. Пусть в остроугольном треугольнике ABC проведены высоты AA1 и CC1 (рис. 5). Тогда треугольники A1BC1 и ABC подобны, причем коэффициент подобия равен cos ∠B.
Лемма 1. Если стороны AC и DF треугольников ABC и DEF лежат на одной прямой или на параллельных прямых (рис. 6), то
Лемма 2. Если два треугольника имеют общую сторону AC (рис. 7), то
Лемма 3. Если треугольники ABC и AB1C1 имеют общий угол A, то
Лемма 4. Площади подобных треугольников относятся как квадрат коэффициента подобия.