1. Т.к. в условии есть речь о гипотенузе и катете, то △MKN — прямоугольный. Обозначим за прямой угол MKN (или же просто K). Он равен 90°.
Обозначим внешний угол к вершине N — «KNO» и найдем угол MKN, смежный с ним. Для этого применим теорему: «сумма смежных углов равна 180 градусов»
∠MKN = 180°−120° = 60°
2. Теперь мы можем найти ∠KMN, т.к. нам известны два угла в треугольнике MKN, и то, что общая сумма всех трёх углов равна 180 градусов.
∠KMN = 180°−(90°+60°) = 30°.
(Можно также найти ∠KMN просто отняв от 90-ста градусов 60 градусов, применяя первое свойство прямоугольных треугольников: «сумма двух острых углов прямоугольного треугольника равна 90°» )
3. Теперь, зная чему равны все углы треугольника и гипотенуза MN, мы можем найти катет KN, применяя 2-е свойство прямоугольных треугольников: «катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы»
То есть KN = ¹/₂MN.
KN = 36 ÷ 2 = 18.
ответ: KN = 18 см.
АС1/С1В=1/1, ВА1/А1С=3/7, АВ1/В1С=1/3, S A1B1C1=S ABC - S AC1B1 - S C1BA1 - S A1CB1, обе части уравнения делим на S ABC
S A1B1C1 / S ABC = 1 - (S AC1B1/S ABC) - (S C1BA1/ S ABC) - (S A1CB1/S ABC)
S ABC=1/2*AB*AC*sinA, S AB1C1=1/2*AC1*AB1*sinA, AB=AC1+C1B=1+1=2, AC=AB1+B1C=1+3=4, S AB1C1/S ABC=(AC1*AB1)/(AB*AC)=(1*1)/(2*4)=1/8,
S ABC=1/2*AB*BC*sinB, S C1BA1=1/2*C1B*BA1*sinB, BC=BA1+A1C=3+7=10,
S C1BA1/S ABC=(C1B*BA1)/(AB*BC)=(1*3)/(2*10)=3/20,
S ABC=1/2*AC*BC*sinC, S A1CB1=1/2*A1C*B1C*sinC, S A1CB/S ABC=(A1C*B1C) / (AC*BC)=(7*3)/(4*10)=21/40,
S A1B1C1/S ABC=1-1/8-3/20-21/40=8/40=1/5, или S ABC/S A1B1C1=5/1
38
Объяснение:
2828833883383883833883