Сечением будет равнобедренная трапеция, т.к. основания призмы лежат в параллельных плоскостях, то секущая плоскость их будет пересекать по параллельным прямым.
Пусть К и М середины рёбер АС и ВС, тогда МК средняя линия, по свойству она параллельна третьей стороне АВ и равна её половине - 4 см (стороны основания равны по 8см)
Секущая плоскость проходит через точку А1 и параллельна МК, т.е. совпадает с А1В1 (МК II АВ II А1В1). А1В1МК - трапеция с основаниями А1В1=8см и МК=4см
Боковые стороны равны из равенства прямоугольных треугольников АА1К и ВВ1М (по двум катетам). А1К и В1М - гипотенузы этих треугольников. Их находим по теореме Пифагора √3²+4²=√9+16=√25=5см.
Р=4+8+2·5=22см
обозначим вершины призмы АВСДА1В1С1Д1 с сечением АА1С1С. Объем призмы вычисляется по формуле: V=Sосн×АА1. Для этого нужно найти площадь основания и высоту призмы. Площадь ромба вычисляется по формуле: Sосн=½×АС×ВД=½×5×8=20см².
Теперь найдём высоту призмы. Сечение призмы представляет собой прямоугольник, одной из сторон которого является искомая высота АА1=СС1 площадь которого 24см², и используя формулу площади найдём высоту: AA1=S÷AC=24÷8=3см
Теперь найдём объем призмы:
V=Sосн×АА1=20×3=60см³
ОТВЕТ: V=60см³