М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LERa007123
LERa007123
06.07.2022 07:41 •  Геометрия

Даны действительная полуось а (√5) и эксцентриситет e гиперболы (3√2) Требуется составить каноническое уравнение гиперболы,
найти координаты фокусов, уравнения асимптот и построить гиперболу.

Действительная полуось гиперболы а
√5
Эксцентриситет гиперболы e
3√2

👇
Ответ:
Хорошо, давайте начнем с составления канонического уравнения гиперболы. Каноническое уравнение гиперболы имеет следующий вид:

(x-h)^2/a^2 - (y-k)^2/b^2 = 1,

где (h, k) - координаты центра гиперболы, a - действительная полуось гиперболы, b - мнимая полуось гиперболы.

У нас дана действительная полуось а = √5 и эксцентриситет e = 3√2. Зная определение эксцентриситета e = c/a, где c - расстояние от центра гиперболы до каждого из фокусов, мы можем найти расстояние c.

e = 3√2 = c/√5.

Умножим обе части уравнения на √5:

3√10 = c.

Теперь у нас есть расстояние c, координаты фокусов можно найти, используя формулу (h±c, k). В нашем случае, так как центр гиперболы будет в точке (h, k), координаты фокусов будут следующими:

F1 = (h+c, k) = (√5+3√10, k).

F2 = (h-c, k) = (√5-3√10, k).

Мы можем продолжить, если у нас есть дополнительные сведения о центре гиперболы, но в нашем случае нет явной информации о центре гиперболы. Поэтому, чтобы продолжить, нам нужно знать дополнительные сведения или условия задачи.
4,4(10 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ