обозначим вершины трапеции А В С Д, диагонали: ВД=24см, и АС и точку их пересечения О.
Диагонали трапеции, пересекаясь делятся между собой в одинаковых пропорциях, а также образуют 2 подобных треугольника ВОС и АОД, стороны которых также имеют такие же пропорции. Если диагональ АС делится точкой на отрезки 3 и 9см, то они имеют пропорции: 3/9=1/3.
В таком же соотношении делится на отрезки ВО и ОД диагональ ВД. Пусть ВО= х, а ДО=3х, составим уравнение:
х+3х=24
4х=24
х=24÷4
х=6
Итак: ВО=6см, тогда ДО=6×3=18см
PS: Не знаю для чего дали данные большего основания, но если нужно найти меньшее основание, то основания также будут иметь пропорции 1/3, и если большее АД=15см, то меньшее ВС=15/3=5см
Обозначим меньшую сторону прямоугольника через x, тогда большая сторона 1,5x. По условию площадь прямоугольника равна 24 см², значит x * 1,5x = 24 1,5x² = 24 x² = 16 x = 4 см - меньшая сторона прямоугольника 1,5 * 4 = 6 см - большая сторона прямоугольника Площадь квадрата равна 24 cм² . Если сторону квадрата обозначим через a, то a² = 24 a = √24 = 2√6 см Чертёж здесь не нужен и вообще непонятно, для чего было написано про стороны прямоугольника. Сторону квадрата и без этого можно было найти. Может в задаче был ещё один вопрос, чему равны стороны прямоугольника, на всякий случай я вычислила.
6см, 18см
Объяснение:
обозначим вершины трапеции А В С Д, диагонали: ВД=24см, и АС и точку их пересечения О.
Диагонали трапеции, пересекаясь делятся между собой в одинаковых пропорциях, а также образуют 2 подобных треугольника ВОС и АОД, стороны которых также имеют такие же пропорции. Если диагональ АС делится точкой на отрезки 3 и 9см, то они имеют пропорции: 3/9=1/3.
В таком же соотношении делится на отрезки ВО и ОД диагональ ВД. Пусть ВО= х, а ДО=3х, составим уравнение:
х+3х=24
4х=24
х=24÷4
х=6
Итак: ВО=6см, тогда ДО=6×3=18см
PS: Не знаю для чего дали данные большего основания, но если нужно найти меньшее основание, то основания также будут иметь пропорции 1/3, и если большее АД=15см, то меньшее ВС=15/3=5см