Объяснение:
вы должны рассматривать высоту как катет прямоугольного треунольника. сначала начертите призму . проведите диагональное сечение . потом проведя диагональ самой призмы вы увидите что сечение разбивается на два прямоугольных треугольника .
ABCDA1B1C1D1 призма
BDB1D1 диагональное сечение
BD1 диагональ призмы.
по правилам прямоугольного треугольника если угол=30' то противоположный катет равен половине гипотенузы
по условию задачи гипотенуза это диагональ BD1
а катет равный половине гипотенузы это диагональ основания BD
в основание квадрат =>BD= 4V2 (V корень кв.)
BD1= 2*4V2=8V2
по теореме Пифагора DD1^2=(8V2)^2-(4V2)^2= 96
DD1=4V6
надеюсь правильно
я так понял, что Вас интересует второй вариант. Вот его решение
Диагональным сечением, площадь которого надо найти, является равнобедренный треугольник, т.к. боковые ребра оказываются все равными между собой, что следует из равенства проекций этих ребер, которые являются половинами равных диагоналей прямоугольника, лежащего в основании.
Т.к. высота пирамиды - это и высота диагонального сечения, то, зная основание треугольника- это диагональ прямоугольника и по теореме Пифагора она равна √(6²+8²)=√(36+64)=√100=10(см), можно найти площадь диагонального сечения. Для этого основание треугольника 10 см умножим на высоту треугольника 8 см и результат поделим на 2
Получим (10*8)/2=40 (см²)
ответ 40 см²
рассуждая аналогично, можем решить и первый вариант.
Находим диагональ прямоугольника по теореме Пифагора
√(8²+15²)=√(64+225)=√289=17, тогда искомая площадь
(17*2)/2=17 (см²)
Дак от велечины сторон не зависит,угол 120,а биссиктриса их попалам делит,значит будет 60 градусов